
Vol.:(0123456789)

Applied Water Science          (2025) 15:224  
https://doi.org/10.1007/s13201-025-02584-1

ORIGINAL ARTICLE

Groundwater sustainability assessment and desertification 
susceptibility mapping in semi arid Bangladesh using integrated 
remote sensing and logistic regression modeling

Ragib Mahmood Shuvo1 · Radwan Rahman Chowdhury1 · Sanchoy Chakroborty1 · Anutosh Das1,2 · Abdulla 
Al Kafy3 · Hamad Ahmed Altuwaijri4 · Tekalign Ketema Bahiru5

Received: 23 January 2025 / Accepted: 10 July 2025 
© The Author(s) 2025

Abstract
Groundwater depletion poses a serious threat to water security in arid regions worldwide, risking sustainable water resources 
and agricultural stability. This study examines groundwater dynamics and water resource sustainability in the arid Barind 
Tract of Northwest Bangladesh using integrated remote sensing techniques and logistic regression modeling. It employed 
three key indices to assess water resource vulnerability: Normalized Difference Vegetation Index, Topsoil Grain Size Index, 
and Aridity Index, integrating them through logistic regression to evaluate desertification susceptibility and water sustain-
ability. The regression model boasts an ROC value of 96.22% and R2 of 0.3893, indicating good classification performance 
with acceptable class variance. Results show that 82.66% of the area faces significant water resource challenges, with 6.27% 
(103.26 km2) at very high risk, 10.80% (177.89 km2) at high risk, and 28.17% (464.05 km2) at moderate risk. The northern 
regions, especially Porsha, Gomastapur, and Nachole Upazillas, are the most vulnerable to water depletion. The study rec-
ommends sustainable water management strategies, including surface water use through floating pontoons and rubber dams, 
emphasizing the urgent need for integrated water resource management to ensure long-term water security. Additionally, the 
research analyzed soil-vegetation feedback using rain use efficiency and found a negative loop in highly desertification-prone 
areas like Porsha and Nachole, indicating the need for regulation-based cropping practices and improved water governance 
in zones at risk of desertification to reduce crop-water redundancy. This research offers valuable insights for water resource 
planning and management in arid regions, supporting sustainable water governance and locally-led adaptation strategies for 
water-stressed environments.
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Introduction

Desertification is a challenging environmental problem 
with significant social and environmental implications that 
has generated debate in a number of areas (Thomas 1997). 
Desertification has usually been seen as a gradual change 
in the amount of life in dry, semi-dry, and semi-humid eco-
systems. Groundwater is one of the biggest factor that dic-
tates the possibility of future desertification (Santos et al. 
2022). Loss of groundwater resources can include changes 
like a loss of agricultural productivity or, more dramatically, 
the replacement of one plant species with another that may 
be just as productive or helpful, or even a decrease in the 
density of the existing plant cover (Hare 1984). Drought, 
deforestation, climate change, human activity, or improper 
agriculture can all contribute to desertification, the deterio-
rating phase in which once-productive land changes into a 
desert by losing its flora and wildlife.

There are numerous instances of desertification possi-
bilities which have been studied globally. Drought-prone 
regions of different countries from Asia and Africa exhibit 
similar desertification trends which eventually pose threat 
towards livability within those regions (Martínez-Valder-
rama et al. 2018; Mihi et al. 2022a; Eskandari Dameneh 
et al. 2021; Al-Obaidi et al. 2022; Kalyan et al. 2021; Zhao 
et al. 2006; Wijitkosum 2021). Semiarid regions of north 
Mediterranean, southern Africa, north and south America, 
which are most likely to be expanded are facing tremen-
dous risk of desertification (Jain et al. 2024). Alongside, 
the Asian regions, with possibilities of dryland shrinkage 
are in huge risk of reduction in ecosystem services com-
pounded by desertification, water shortage and hydrocli-
matic abnormalities (Jain et al. 2024).

Initiatives to map and monitor desertification processes 
using remote sensing (RS) commenced over thirty years 
ago in various climate-vulnerable locations. The ability to 
generate precise, specific, and extensive assessments of sev-
eral underlying elements of desertification by remote sens-
ing has been appreciated globally. RS-led outputs can be 
compartmentalized into multi-decision analysis, assisting 
in long-term decision making (Zhao et al. 2006; Lamqa-
dem et al. 2018; Wei et al. 2018; Djeddaoui et al. 2017). 
Initially, assessment of vegetation index was used by most 
researchers to identify desertification susceptibility. Gradu-
ally, more underlying factors like, soil particle composition, 
aridity, surface albedo, soil and water salinity, were included 
in desertification analysis based on differential contexts of 
the semi-arid and arid regions (Wijitkosum 2021; Lamqa-
dem et al. 2018; Wei et al. 2018; Djeddaoui et al. 2017; Mihi 
et al. 2022b; Hadid and Ahmed 2024; Kairis et al. 2014).

The Barind tract (BT) in northwest Bangladesh 
has a heterogenic characteristic in terms of landform, 

topography, hydrology and climatic perspectives, mak-
ing one of the climate and resource vulnerable regions of 
Bangladesh. It is a hard red-soil region with an elevated 
topography, having higher temperatures and evaporation 
than the rest of the country. This area's surface water avail-
ability is likewise limited due to its geographical position. 
This dry terrain receives the least amount of precipita-
tion each year in Bangladesh, averaging around 1500 to 
2000 mm annually (Imon and Ahmed 2013). It is com-
monly assumed that the Tract formed as a result of tectonic 
uplift and/or existing as an erosional geomorphic feature 
(Rashid et al. 2015). The firm red Pleistocene clay soil of 
this region contributes significantly to periodic droughts 
and subsequent desertification possibilities, pushing 5.6 
million people towards risk of food insecurity.

Despite numerous studies on groundwater fluctuations in 
the region (Rahman et al. 2017; Hossain et al. 2020; Das 
et al. 2021; Shuvo et al. 2024), there remains a substantial 
gap in understanding how these fluctuations directly impact 
the risk of desertification, particularly in the BT. This study 
aims to address this gap by identifying groundwater fluc-
tuations and predicting potential desertification areas. This 
study will assess the temporal groundwater fluctuation and 
vegetation, soil particle properties, and climatic components 
of desertification by remote sensing approaches, combined 
with logistic regression modelling to forecast desertifica-
tion susceptibility of the selected study area. Alongside, a 
number of viable strategies will be proposed to safeguard 
effective decision-making in the BT.

This study advances groundwater hydrology by integrat-
ing remote sensing techniques with logistic regression mod-
eling, offering a comprehensive understanding of groundwa-
ter fluctuations and new methodologies for similar studies. 
The findings have significant implications for sustainable 
water management and policymaking in the BT, inform-
ing targeted interventions to mitigate ecological crises and 
ensure food security. This research highlights the urgent 
need for sustainable groundwater management, crucial for 
achieving the Sustainable Development Goals (SDGs) in 
vulnerable regions and serves as a model for other areas 
facing similar challenges.

Materials and methods

Study area

BT is a geographical designation for a portion of Bang-
ladesh's larger Rajshahi, Nawabganj, Dinajpur, Rangpur, 
Joypurhat, Gaibandha, and Bogra districts, as well as West 
Bengal's Indian territorial Maldah district. It is situated at a 
higher elevation than the surrounding floodplains. There are 
two terrace levels, one at 40 m and the other between 19.8 
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and 22.9 m, according to the Tract's layout. Consequently, 
even when the monsoon floodplains are flooded, BT remains 
dry and is drained by a few tiny streams. BMDA has catego-
rized BT into three groups based on its elevation and the 
availability of groundwater (Das et al. 2021). The high BT 
(HBT) lands are chosen as the study location because they 
are expected to bear the brunt of the groundwater's negative 
effects.

The study area was thoughtfully selected to encom-
pass various administrative units, including the HBT and 
the Upazillas (sub-districts) of Nachole, Gomastapur from 
Nawabganj District, Porsha of Naogaon District, and Goda-
gari, Tanore within the and Rajshahi districts in Bangla-
desh (Fig. 1). Despite their close geographical proximity, the 

deliberate inclusion of these multiple administrative units 
allows for a nuanced examination of potential variations in 
environmental and socio-economic factors. This strategic 
selection enhances the study's ability to draw meaningful 
conclusions about the factors under investigation by con-
sidering the broader context of the region (Ahmeduzzaman 
et al. 2012).

Channel migration, in especially the movement of the 
Tista and the Atrai and their distributaries over the past few 
centuries, has had a profound impact on the local climate. 
Temperatures and humidity have risen because to geologi-
cal changes. In the warmest season, the average temperature 
is between 25 and 35 °C, and in the coolest season, it is 
between 9 and 15 °C. Some of the hottest days of summer 

Fig. 1   Study area map
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have temperatures of 45 °C or even higher (Hossain et al. 
2020, 2019).

Research methodology

Desertification, as defined by the international community, 
is “land degradation in arid, semiarid, and dry sub-humid 
areas, which is primarily caused by human activities and 
to climate variations”. Multiple interacting factors have an 
impact on the desertification process. The primary causes 
of desertification are human activity, soil degradation, cli-
mate change and vegetation loss. It is difficult to map the 
risk of desertification because of the complexity of the fac-
tors to be considered and the lack of available information. 
Based on prior study methodologies, three theme levels 
were used to map the desertification susceptibility. These 
are the normalized Difference Vegetation Index (NDVI), 
Topsoil Grain Size Index (TGSI) and Aridity Index (AI) 
(Kalyan et al. 2021; Wijitkosum 2021; Becerril-Piña et al. 
2015; Hereher and El-Kenawy 2022; Ozgul and Dindaro-
glu 2021). The BT, with its unique tendency of agricul-
ture-dependency within water-scarce region, specifically 
degrades available groundwater (GW) resources, along 
with erosion in soil properties (Rahman et al. 2017; Hos-
sain et al. 2020; Aziz et al. Jan. 2015). The BT has a very 
low GW recharge potential, with almost 85% of the HBT 
has low recharge potential (Adham et al. 2010). Alongside, 
merely 8.6% of total precipitation recharges into GW table 
annually with 3 m of table declination (Adham et al. 2010). 
The same region has 54% of the total land area utilized for 
double cropping, while 34% is allocated for triple crop-
ping (Hossain et al. 2019). The above-mentioned state-
ments indicate the severe GW and soil degradation over 
the years, highlighting the justification of selecting NDVI 
and TGSI within the study. Additionally, the BT receives 
a very low annual rainfall and high evapotranspiration due 
to its topographical characteristics. Such a circumstance of 
combined climatic and human-induced attributes justified 
the selection of AI as one of the factors for desertification 
susceptibility (Aftabuzzaman et al. 2013; Rahman et al. 
Feb. 2016; Rahman and Mahbub 2012). The data sources 

and types required for mapping the selected indicators are 
briefed in Table 1.

In dry and semi-arid regions, one of the primary con-
tributors to desertification is the absence of natural vegeta-
tion (also known as deforestation) (Martínez-Valderrama 
et al. 2018). The NDVI allows researchers to distinguish 
ecosystem functional categories or biozones, estimate 
annual net primary production (ANPP) at various global 
scales, and differentiate land cover at the regional and 
global levels (Paruelo et al. 2001; Running 1990). In the 
field of ecosystem monitoring, the NDVI, also known as 
the normalized reflectance difference between the near-
infrared (NIR) and visible red bands, is being used rather 
frequently (Eq. 1) (Rouse et al. 1974).

Various degrees of desertification lead to the formation 
of distinct topsoil textures. The severity of desertification 
increases as the surface soil particle composition becomes 
coarser (Wang et al. 2006). As a result, Topsoil Grain Size 
Index (TGSI) is suggested as an assessment tool for soil 
degradation (Liu et al. 2018). Xiao et al. (2006) developed 
the Topsoil Grain Size Index to evaluate top soil texture 
and soil erosion in Asia's semi-arid regions. TGSI is cal-
culated as follows:

where, blue, red, and green are the bands of remote sensing 
data. The TGSI was found to compensate for the NDVI's 
shortcoming in capturing soil moisture variability, suggest-
ing that it might be used to identify prospective vegetation 
establishment regions (Kim et al. 2020). Even though the 
majority of the studies implemented NDVI, the Bare Soil 
Index (BSI), or the proportion of total grass cover to assess 
desertification by identifying changes in vegetation or bare 
soil cover, these indices are heavily reliant on rainfall which 
has high temporal and spatial variability as well as uncer-
tainty in arid regions.

(1)NDVI =
NIR − RED

NIR + RED

(2)TGSI =
RED − BLUE

RED + BLUE + GREEN

Table 1   Accrued data and source

Analysis Required data Data source Band usage Timeline

NDVI Landsat 9 Satellite image US Geological Survey (https://​earth​explo​rer.​usgs.​gov) 4, 5 2022
TGSI Landsat 9 Satellite image US Geological Survey (https://​earth​explo​rer.​usgs.​gov) 2, 3, 4 2022
AI Monthly rainfall data Bangladesh Water Development Board (BWDB) N/A 2017–2021

Monthly temperature data Data Access Viewer (https://​power.​larc.​nasa.​gov/​data-​
access-​viewer/)

N/A 2017–2021

GW fluctuation Ground water table level Barind Multipurpose Development Authority (BMDA) N/A 2017–2021

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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AI is calculated by dividing the amount of projected 
evaporation by the amount of expected precipitation (Eq. 3) 
(Greve et al. 2019). AI categorizes climate conditions in 
respect to water accessibility. Calculating AI exhibits the 
impact of climatic factors on the local hydrological cycle, 
water resource management, and environment, highlighting 
the main reason behind selecting AI as one of the three indi-
cators of desertification analysis (Liu et al. 2013).

where PET stands for potential evapotranspiration and P rep-
resents average annual precipitation (Middleton and Thomas 
1992). Evapotranspiration data in this study were computed 
using the ‘R’ software with the SPET package, which uses 
the Penman–Monteith equation.

The outputs of the three above-mentioned indices were 
overlayed and amalgamated by logistic regression modelling 
to produce the desertification susceptibility map, showing 
the ranking of the vulnerable areas having a greater probabil-
ity of future desertification. The goal of LRM is to choose 
the best model to characterize the connection between the 
occurrence of desertification and its risk in the context of 
risk mapping (dependent variable) and several indicators, 
including NDVI, TGSI, AI, and APSE (independent vari-
ables). For this model to work, all indices must be standard-
ized to a byte-level range. Model validation was conducted 
using a 70–30 split approach, where 70% of the data was 
used for training and 30% for testing. Additionally, k-fold 
cross-validation (k = 5) was performed to assess model 
stability. The high ROC value of 96.22% was consistently 
achieved across all validation folds, confirming model 
robustness. The ROC and R2 values for the logistic regres-
sion model are 96.22% and 0.3893, respectively. Good 
results are shown by an R2 value of 1, whereas the absence 
of any correlation is indicated by an R2 value of 0. For a very 
good fit, R2 greater than 0.20 is required (Clark and Hosking 
1986). These data suggest that the method of logistic regres-
sion gives adequate results. Finally, the logistic regression 
equation is established (Eq. 4). Equal intervals were utilized 
in order to properly categorize the final synthetic map of 
desertification risk (Mihi et al. 2022a). Due to inconsistency 
in spatial data availability on anthropogenic interactions on 
arid regions and low reliability of locally available database, 
APSE was finally excluded from this research. Nevertheless, 
the established regression equation can be of a greater poten-
tial if there is availability of authentic data regarding APSE.

(3)AIU = P∕PET

(4)
Logit(Desertification) = − 237.7689 + (0.355944 × Topsoil Grain Size Index)

+ (0.014675 × NormalizedDifferenceVegetation Index)

+ (0.570812 × Aridity Index) − (0.003177 × Anthropic Pressure on the Steppe Environment)

The results from desertification susceptibility assess-
ment can be validated and supplemented with the help of 
soil-vegetation feedback theory which exhibits positive or 
negative feedback for crop-water use efficiency in the study 
area. Numerous studies applied remote sensing database to 
obtain soil-vegetation feedback where degradation in veg-
etation pattern is heavily correlated with subsequent losses 
in water and soil potential within semi-arid and arid regions 
(Mayor et al. 2013; Lejeune et al. 2002; Caylor et al. 2006; 
Couteron and Lejeune 2001; Casper et al. 2003). To study 
the soil-vegetation feedback, global researchers imple-
mented a number of methods like HORAS model (Quevedo 
and Francés 2008), rainfall gradient and soil moisture com-
ponent analysis (D’Odorico et al. 2007), PI model (Couteron 
and Lejeune 2001), Rain-Use Efficiency (RUE) assessment 
(Houérou 1984; Liu et al. 2024) and several approaches 
aided by remote sensing data. Based on the available data 
for this study and its applicability related with global stud-
ies, the RUE approach seemed appropriate as it studies the 
gradual declination of vegetation based on annual average 
or seasonal rainfall, the factor which severely affects the BT, 
and has been applied in similar conditions like this in differ-
ent studies (Houérou 1984; Liu et al. 2024; Higginbottom 
and Symeonakis 2014; Ruppert et al. 2012). The RUE is 
calculated by the following equation:

Results

Analysis of the land and water dynamics of BT

BT is situated in a zone free from flooding because of its 
high elevation, making it more susceptible to drought (Rah-
man et al. 2017). The elevation map (Fig. 2) highlights the 
natural undulation and unusual land dynamics of BT, which 
rise up to 60 m above sea level. These results in high expo-
sure to heat, evaporation, and challenges in groundwater 
recharge. The resulting effect of the land dynamics is justi-
fied by the irregular fluctuation of groundwater in the study 
region.

The groundwater fluctuation map (Fig. 3) shows a brief 
about the pre-monsoon water level fluctuation throughout 
the study area. Only Godagari Upazilla is within the availa-

bility of surface water and hence has a range of groundwater 

(5)RUE =
MeanNDVI(Growing Season or Kharif )

Annual or Seasonal Rainfall(mm)
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level rise (Table 2). Other than this, the elevation goes higher 
along Tanore–Nachole–Gomastapur–Porsha. The recent 
5-year analysis shows a glimpse of how these changes in 
exacerbate over the decades (Table 2).

The findings reveal an enormous difference in ground-
water behavior. Porsha had the highest average fluctua-
tion (5.56 m) and maximum value (6.52 m), as well as 
the largest standard deviation, indicating severe volatil-
ity in groundwater levels. Gomostapur and Nachole have 

relatively high fluctuation values, indicating persistent 
extraction pressure. In contrast, Godagari and Tanore, 
both near the Padma River, had significantly lower fluc-
tuation magnitudes, with Godagari having the lowest mean 
(0.22 m) and standard deviation (0.33 m), indicating more 
stable groundwater conditions supported by surface water 
sources. Such variations highlight the importance of spe-
cialized water management techniques that are customized 
to each region’s hydrological context.

Fig. 2   Elevation map of the 
study area
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Desertification susceptibility risk analysis

Analysis from the three indicators of desertification 
susceptibility

According to the NDVI data, steppe type vegetation rep-
resents for 48.68% of all vegetation types in the research 
region. Depending on the season and latitude, a steppe may 
be semi-arid or covered in grass, shrubs, or both (Fig. 4). 
The climate found in areas that are too dry to support a 

Fig. 3   Groundwater fluctuation 
map of the study area

Table 2   Groundwater fluctuation statistics of the study area

Upazila Mean fluctua-
tion (m)

Maximum fluc-
tuation (m)

Standard 
deviation 
(m)

Godagari 0.215 1.261 0.333
Gomostapur 4.063 6.249 0.601
Nachole 2.148 4.089 0.575
Porsha 5.562 6.52 0.66
Tanore 0.549 1.601 0.361
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forest but not as arid as a desert is referred to as a "steppe 
climate." Then, dense vegetation, which was represented 
by the forest steppe, covered 44.19% of the entire region, 
with the majority of it being spread in the north-west and 
south-east (Table 3). The two almost straight flows of thick 
vegetation are separated by steppe vegetation. The desert 
steppe vegetation is sparsely distributed in the north of 
the study area and densely concentrated in a tiny por-
tion of the south-east corner, which makes up 6.29% of 
the study area, as well as in a small portion of the south 

along the Padma River (mainly char area). To sum it all 
up, 1% of the area is taken up by water, which comprises 
a tiny stretch of the Padma River in the south and a few 
scattered ponds. Here, NDVI is associated with the level 
of photosynthetic activity of green vegetation; the vast 
desert steppe is characterized by low NDVI values, which 
correspond to a low level of photosynthetic activity. On 
the other hand, the forest steppe is defined by high NDVI 
values, which correspond to a high level of photosynthetic 
activity (high NDVI value).

Fig. 4   a NDVI, b TGSI, and c 
AI analysis of the study area
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Over half of the region is covered with water or plants and 
medium contents of fine sand, according to TGSI (Fig. 4). 
They're 39.49% and 39.94% of the land respectively. The 
Padma River causes a large concentration of vegetation or 
water in the south. It is common to have good-quality soil for 
vegetation near the river in the context of the Bengal Delta. 
High contents of fine sand are mainly diffused in the north 
and southwest with a mixture of medium contents of fine 
sand. It covers almost 18.49% of total land (Fig. 4).

This type of soil can turn into a desert area in the future 
with the help of a dry climate. Fully covered by fine sand 
dominates the Padma River char and a small amount of the 
southeast. Poorly dispersed in the north, which represents 
2.8% of the area. In Porsha, Naogaon, the number of high 
contents of fine sand and entirely covered land is higher than 
in other areas.

In short, the aridity increases in the north and slowly 
reduces in the south part of the area (Fig. 4). The arid part 
covers 2.48% of the total area, mostly in the center of Porsha 
Upazilla, Naogaon. The amount of rainfall is significantly 
low, which factor make the area more arid. The semi-arid 
and subhumid areas cover almost the same amount of area 
(respectively 38.53% and 38.63%). A small portion of the 
subhumid area is laid between the humid area near the Goda-
gari and Tanore Upazilla boundary lines. The humid area 
occupies 20.36%, mainly situated near the Padma River and 
the north portion of Tanore Upazilla, Rajshahi, resulting low 
aridity.

Desertification susceptibility risk analysis of the study area

The desertification risk map depicts the potential for 
desertification in the research area, the creation of which 
required the combining of data on soil, vegetation, and 
weather (Fig. 5). The potential for desertification to spread 
varies across the research region, as expected, depend-
ing on the relative strength of the three main components 

known to control this phenomenon risk gradients. To sup-
plement the descriptive interpretation of NDVI, TGSI and 
AI in relation to desertification susceptibility, a quantita-
tive study was performed. Specifically, the mean values 
of each indicator were determined for the five classes: No 
Risk, Moderate, High, and Very High (Table 4).

A Pearson correlation analysis was used to determine 
the strength of link between each index and the risk 
classifications (1 = No Risk, 5 = Very High Risk). The 
NDVI score had a negative link with desertification risk 
(r = −0.465), showing that places with less plant cover 
area are more vulnerable. In contrast, the TGSI and AI 
both showed high positive correlations (r = 0.786 and 
r = 0.988, respectively), indicating that coarser soils and 
drier climatic conditions significantly contribute to the risk 
gradient.

The data show that the northern half of the study area 
has the majority of the very high-risk zones. A 6.27% por-
tion of the area is made up of these type zones (Table 4). A 
total of 10.8% of the land is classified as high risk, mostly 
in the Northern portion and is situated around the very 
high-risk zone, marked in red. This was the outcome of 
a number of contributing factors that encourage potential 
desertification, including harsh climatic conditions with 
less rainfall (1100–1300 mm), degraded soil structure, 
human activities such as groundwater overexploitation, 
water waste, an insufficient pricing and monitoring sys-
tem for groundwater extraction, and degradation of natural 
vegetation brought on by the built environment, deforesta-
tion, and loss of soil moisture due to a lack of groundwa-
ter availability. The central and central-northern portions, 
comprising 28.17% of the total land, are moderately at 
risk. Rest of the area (17.33%) is at totally no risk of deser-
tification. Which fully placed in the Godagari Upazilla. 
Availability of surface water especially the existence of 
the Padma River, make the area less vulnerable than the 
rest of the study area.

Table 3   Summary of analysis 
from NDVI, TGSI and AI

Index Description Area (km2) Percentage (%)

NDVI Water body 13.65 0.82
Desert steppe 104.44 6.29
Steppe 807.85 48.69
Forest steppe 733.30 44.20

TGSI Soil covered by vegetation or water bodies 655.66 39.49
Medium contents of fine sand 663.17 39.94
High contents of fine sand 307.00 18.49
Soil is fully covered by fine sand (desert) 34.59 2.08

AI Arid 41.16 2.48
Semi-arid 639.59 38.53
Sub humid 641.21 38.63
Humid 337.97 20.36
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Outlining soil‑vegetation feedback for validating 
desertification susceptibility analysis

In drylands, a decrease in RUE is frequently associated 
with land degradation, RUE serves as a useful measure of 
how effectively vegetation consumes available moisture. 
The results from RUE assessment of the study area exhibit 
Porsha have the lowest RUE (0.025), showing possible 
symptoms of degradation despite moderate NDVI, whereas 
Godagari has the highest RUE (0.031), indicating a more 

Fig. 5   Desertification suscepti-
bility risk map of the study area

Table 4   Classes of desertification risk

Desertification risk class Area (km2) Percentage (%)

No risk 285.46 17.33
Slight 616.40 37.42
Moderate 464.05 28.17
High 177.89 10.80
Very high 103.26 6.27
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responsive vegetation cover in relation to rainfall and prox-
imity to surface water regions. These results are consistent 
with the soil vegetation feedback theory, highlighting that a 
decrease in vegetation weakens plant productivity by reduc-
ing soil penetration and moisture retention (Rietkerk and 
Koppel 1997). Furthermore, surface drying can be acceler-
ated and groundwater recharge reduced by slight vegetation 
loss, according to dryland hydrology models (Rodríguez-
Iturbe and Porporato 2005). Hence, regions with consistently 
low RUE in spite of sufficient rainfall may fall victim to 
early desertification, where vegetative function is compro-
mised (Table 5).

Discussion

Flooding and monsoon rains in Bangladesh are the main 
sources of groundwater recharge. The BT is situated in a 
zone free from flooding because of its high elevation, mak-
ing it susceptible to drought. The region's thick, mushy 
clay surface acts as an aquitard, preventing groundwater 
recharge and boosting surface runoff (Rahman et al. 2017). 
As a result, with rising water use for irrigation, the ground-
water level in this area is gradually declining over years. In 
the study region, rain infiltration, stream and channel flow, 
and pond and low-lying area percolation recharge ground-
water. A small amount of recharge comes from neighboring 
higher elevations and irrigated farms, resulting water table 
declination up to 6 m during the last five years which is very 
alarming.

Water levels typically fluctuate in a seasonal rhythm. A 
cycle of water discharge and recharge is maintained throughout 
the year, which keeps the sustainability of groundwater within 
a region. The arid regions gradually break the cycle while cli-
matic conditions change and the balance between extraction 
and preservation stumbles. Regional elements that contribute 
to the fluctuations, like proximity to rivers, the duration of the 
rainy season, the frequency of dry seasons, and the intensity 
of pump operation, are highlighted in the study region as well. 
Results from such irregularities in water resource management 
are causing high expenditure in agricultural production, over-
exploitation of groundwater, and challenges in conducting 
livelihood practices in the study region.

The results also depict that the regions with better 
groundwater discharge are situated at a location with less 
elevation and more proximity of the surface water reservoirs. 
Godagari has already brought surface water from Padma 
River by pressure pump for travelling about 3.5 km. But 
this can easily be extended to the whole BT by lifting tech-
nology. The canal networking channel of BT is absolutely 
feasible for surface water channelization (Hossain et al. 
2022). BMDA constructed floating pontoons onto which 
centrifugal pumps were mounted using rubber-made flex-
ible armed hope pipes so that the water from those sources 
could be used for agriculture (Fig. 6). The implementation 
of floating pontoons and rubber dams has shown success in 
similar semi-arid regions. For instance, Hossain et al. (2022) 
demonstrated that double lifting methods reduced irrigation 
costs by 30–40% in the BT (Hossain et al. 2022). Initial 
investment costs are estimated at $50–75 per hectare, with 
payback periods of 3–5 years based on reduced groundwater 
extraction expenses.

Alongside, results from RUE analysis depict that a nega-
tive feedback loop will eventually influence land and sub-
surface water degradation, causing severe desertification. A 
high risk of desertification will ultimately cripple the live-
lihood opportunities of the communities, forcing them to 
migrate in other regions for survival. According to IPCC, 
the two main causes driving the progress of desertification 
are climatic changes and insufficient human activities, which 
calls for the management of the non-renewable resources, 
inclusive of the community people (IPCC 2024). Therefore, 
in order to commence reducing the desertification stress, 
regulations upon controlling the intensive cropping culture 
and introduction of high-yielding and less-irrigation crops 
have to be initiated within the study area.

Regions with climatic challenges have to be dealt with 
sensitive approaches so that the sustainability of livelihood 
and resources do not collide with each other. The people 
in BT are forced to discharge groundwater to serve their 
livelihood purpose despite of knowing the unsustainability 
of this resource. The desertification susceptibility analysis 
highlighted regions where the intensive agricultural process 
has to be managed to conserve water resource for future 
generations. Through this research, the plausible solutions 
can be implemented in terms of policy and governance, to 
regulate the controlled usage of groundwater in order to 
establish sustainable agriculture, water resource manage-
ment and adaptation to climatic hazards.

Limitations of the study

This study has several methodological and data-related 
limitations that should be acknowledged. First, the exclu-
sion of the Anthropic Pressure on Steppe Environment 

Table 5   Soil-vegetation feedback analysis of the study area

Upazila Rainfall (mm) NDVI RUE Feedback loop

Godagari 117.11 3.67 0.031 Positive
Gomostapur 101.50 3.02 0.030 Neutral
Porsha 104.36 2.57 0.025 Strong negative
Tanore 109.27 3.44 0.031 Positive
Nachole 108.84 2.99 0.027 Relatively negative
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(APSE) variable represents a significant limitation. APSE 
was initially designed to capture human influences including 
population density, agricultural intensity, and infrastructure 
development patterns across the study area. However, the 
variable was omitted due to inconsistent spatial data avail-
ability and reliability concerns regarding government sur-
vey datasets, which posed risks of introducing systematic 
errors into the regression analysis. Second, the study relies 
on a single year (2022) of satellite imagery for vegetation 
and soil analysis, which may not capture seasonal or inter-
annual variability in desertification indicators. This temporal 
limitation could affect the representativeness of the find-
ings, particularly in a region known for significant climatic 
fluctuations. Third, the logistic regression model, while 

achieving high ROC values, was validated using available 
ground-truth data that may not comprehensively represent 
all micro-climatic conditions within the heterogeneous BT 
landscape. The model's performance in areas with unique 
topographical or hydrological characteristics remains uncer-
tain. Finally, the study does not incorporate socio-economic 
factors such as farming practices, crop selection patterns, or 
local water management policies, which significantly influ-
ence desertification processes in agricultural regions. These 
human dimensions are critical for comprehensive deserti-
fication assessment but were beyond the scope of the cur-
rent remote sensing-based approach. Future research should 
address these limitations by integrating multi-temporal sat-
ellite data, incorporating reliable socio-economic datasets, 

Fig. 6   Location of surface water 
irrigation by pontoons and 
rubber dams in the Northwest 
Bangladesh
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and developing hybrid models that combine remote sensing 
observations with field-based measurements to enhance the 
accuracy and applicability of desertification susceptibility 
mapping.

Conclusions

This research provides a comprehensive framework for 
assessing groundwater dynamics and desertification suscep-
tibility in arid regions through integrated remote sensing 
and logistic regression modeling. The study demonstrates 
that 82.66% of the BT faces significant water resource chal-
lenges, with elevation gradients from south to north cor-
relating strongly with increasing desertification risk. The 
northern regions, particularly Porsha, Gomastapur, and 
Nachole Upazillas, exhibit the highest vulnerability due to 
combined effects of low precipitation (1100–1300 mm annu-
ally), elevated topography (up to 60 m above sea level), and 
intensive groundwater extraction for agriculture.

The methodological contribution of this study lies in the 
successful integration of vegetation, soil texture, and cli-
matic indices through logistic regression modeling, achiev-
ing 96.22% ROC accuracy. The incorporation of RUE 
analysis validates the desertification assessment through 
soil-vegetation feedback theory, revealing negative feed-
back loops in high-risk areas that accelerate land degra-
dation processes. This multi-indicator approach provides 
a robust, transferable methodology for similar semi-arid 
regions globally.

From a policy and governance perspective, this study 
offers critical insights for regional water resource manage-
ment and sustainable development planning. The spatially 
explicit risk mapping enables policymakers to: (1) prioritize 
water conservation investments in very high-risk zones cov-
ering 6.27% of the study area, (2) implement targeted agri-
cultural regulations in moderate to high-risk areas encom-
passing 45.24% of the region, and (3) develop early warning 
systems for desertification monitoring. The identification of 
surface water utilization potential through floating pontoons 
and rubber dams provides actionable adaptation strategies 
that can reduce groundwater dependency while maintaining 
agricultural productivity.

The findings directly support SDG achievement in vul-
nerable regions, particularly SDG 6 (Clean Water and Sani-
tation), SDG 13 (Climate Action), and SDG 15 (Life on 
Land). The study demonstrates that immediate intervention 
is required to prevent irreversible ecosystem degradation and 
ensure long-term water security for 5.6 million inhabitants 
dependent on BT resources.

Future research directions should focus on: (1) inte-
grating socio-economic variables including farming 
practices, water pricing mechanisms, and community 

adaptation strategies to enhance human–environment 
interaction understanding, (2) incorporating machine 
learning algorithms such as Random Forest or Support 
Vector Machines for improved susceptibility classification 
accuracy and temporal prediction capabilities, (3) develop-
ing time-series analysis using multi-temporal satellite data 
to monitor desertification progression and validate model 
predictions, and (4) conducting comprehensive cost–ben-
efit analyses of proposed mitigation technologies including 
feasibility assessments and implementation timelines for 
scaling across similar arid regions.

This research establishes a scientific foundation for 
evidence-based water governance and climate adaptation 
strategies, providing a replicable framework for address-
ing water security challenges in arid regions experiencing 
rapid environmental change.
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