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Abstract: Effective incident detection is essential for emergency response and transportation
management. Traditional methods relying on stationary technologies are often costly and
provide limited coverage, prompting the exploration of crowdsourced data such as Waze.
While Waze offers extensive coverage, its data can be unverified and unreliable. This study
aims to identify factors affecting the reliability of Waze alerts and develop a predictive
model to distinguish true incidents from false alerts using real-time Waze data, thereby
improving emergency response times. Real crash data from the New Jersey Department
of Transportation (NJDOT) and crowdsourced data from Waze were matched using the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to
differentiate true and false alerts. A binary logit model was constructed to reveal significant
predictors such as time categories around peak hours, road type, report ratings, and crash
type. Findings indicate that the likelihood of accurate Waze alerts increases during peak
hours, on streets, and with higher report ratings and major crashes. Additionally, multiple
machine learning-based predictive models were developed and evaluated to forecast in
real time whether Waze alerts correspond to actual incidents. Among those models, the
Random Forest model achieved the highest overall accuracy (82.5%) and F1-score (82.8%),
and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.90,
demonstrating its robustness and reliability for real-time incident detection. Gradient
Boosting, with an AUC-ROC of 0.90 and Area Under the Precision–Recall Curve (AUC-PR)
of 0.90, also performed strongly, particularly excelling at predicting true alerts. The analysis
further emphasized the importance of key predictors such as time of day, report ratings,
and road type. These findings provide actionable insights for enhancing the accuracy of
incident detection and improving the reliability of crowdsourced traffic alerts, supporting
more effective traffic management and emergency response systems.

Keywords: incident detection; Waze alerts; random forest; crowdsourced data; transporta-
tion management

1. Introduction
Incident detection is crucial for effective emergency response and congestion manage-

ment. Emergency response to incidents remains a significant challenge for communities
worldwide, exacerbated by growing urbanization and the resulting strain on the limited
resources of emergency management agencies [1,2]. Transportation professionals often rely
on stationary data collection technologies, such as loop detectors, cameras, and microwave-
based systems, for incident detection. However, these technologies are expensive not only
for installation but also maintenance and offer limited coverage. Consequently, in recent
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years, researchers have increasingly focused on crowdsourced data for incident detection
due to their cost-effectiveness and extensive coverage. Despite its potential, crowdsourced
data are largely unregulated, as the contributors are not traditionally trained, and the data
often lack verification [3]. Therefore, robust and effective methods are required to filter
crowdsourced data to enhance their reliability and usefulness.

Among various sources of crowdsourced data, Waze is one of the most popular data
sources. Waze is a crowd-sourced navigation application created in 2009 to help users
navigate and avoid both literal and figurative bumps in the road through collaborative
efforts [4]. It was originally developed by Waze Mobile [5]. Waze provides satellite
navigation software on smartphones and other GPS-enabled devices. It efficiently guides
users by leveraging information contributed by other users. Users can share information
about traffic incidents such as accidents, congestion, speed, and police traps, providing
valuable alerts and alternative routes for others. Users can also update roads, landmarks,
house numbers, etc., from the online map editor. Waze incorporates data from state agencies
on events like road construction, aiming for higher accuracy through collective input [6].
Currently, Waze collaborates with around 3000 partners worldwide to reduce traffic, guide
infrastructure decisions, and enhance community safety [7].

In conventional methods, accident analysis predominantly relied on police-reported
crash records (PRCRs). The issue with this approach is that the police report only major
crashes, leaving minor crashes often underreported [8]. This deficiency in data affects the
accuracy of the analysis. In such cases, crowdsourced data can complement official data
if integrated properly and accurately, as they also cover minor crashes. Several studies
have demonstrated the potential of Waze crowdsourced data for crash analysis, facilitating
real-time traffic management [2–15]. However, most of these studies address the challenges
of integrating Waze data with official data due to issues such as data redundancy, where
multiple reports may be recorded for a single incident. Researchers have also examined
factors affecting the trustworthiness of Waze data. Despite this, existing models cannot
evaluate the trustworthiness of Waze data in real time and alert when a response is needed.
A robust predictive model could facilitate quick emergency response, improve traffic
management, alleviate congestion, and save resources and energy.

New Jersey Department of Transportation’s (NJDOT) Safety Service Patrol (SSP) assists
nearly 70,000 motorists annually whose vehicles become disabled on state highways due to
crashes, mechanical failures, and other issues [16]. SSP drivers are alerted to incidents by
the New Jersey State Police (NJSP) when their operators receive 911 calls. SSP drivers then
support the NJSP and other responders by ensuring safety, diverting traffic, and creating
secure work zones, typically clearing incidents in under 40 min. To further enhance the
response time and avoid congestion during incidents, leveraging Waze user-generated
alerts has great potential. However, the challenge lies in the accuracy of Waze alerts, as
false reports can occur.

This research first examines the overall matching rate of Waze crash alerts by compar-
ing them with the actual crash records. Historical crash records from NJTR-1 and Waze
alerts were matched using the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [17] algorithm to differentiate true and false alerts. Then, this research identified
factors affecting the matching cases through a statistical analysis. A binary logit model
was developed to determine the factors contributing to true alert cases. Furthermore, a
machine learning-based predictive model was developed to forecast in real time whether a
Waze alert corresponds to a true incident, enabling authorities to take timely action when a
response is required. It is expected that the findings of this research can help agencies like
NJDOT utilize Waze alerts for effective real-time traffic management and SSP deployment.
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2. Literature Review
Several researchers have explored the potential integration of Waze data with official

crash data to enhance the efficiency of crash analysis. This section provides an overview of
the literature investigating the use of Waze data in accident research.

Crowdsourced data from Waze offer significant potential for revealing various as-
pects of road traffic. Senarath et al. [2] proposed a novel method to improve emergency
incident detection by integrating crowdsourced Waze data with official incident reports
from Nashville, Tennessee. The approach included spatial–temporal discretization of Waze
reports into hexagonal grids and time steps, followed by clustering these reports to group
data related to the same incident. Bayesian inference is then applied to calculate the proba-
bility of an incident occurring in each region based on the reliability and number of Waze
reports. Threshold values for incident detection, determined using official incident data
from the Enhanced Tennessee Roadway Information Management System (E-TRIMS), are
used to decide when to alert emergency response authorities. If the calculated probability
of an incident is higher than this threshold, an alert is sent to emergency response authori-
ties; if it is lower, the system continues to collect and analyze additional Waze reports in
subsequent time steps. Extensive experiments demonstrate that this method outperforms
existing baselines in F1-score and AUC, highlighting its potential to enhance emergency
response operations.

Sandt et al. [3] examined the potential of Waze crowdsourced data to enhance law
enforcement and emergency response to disabled and abandoned vehicles (DAVs) on
limited access freeways in Florida. By analyzing over 3.8 million Waze alerts and 329 DAV
crashes from July 2019 to December 2020, they found that using spatiotemporal buffers of
0.5 km and 30 min could effectively match Waze alerts to DAV crashes. The results suggest
that Waze alerts could be most beneficial during morning peak hours and in urban areas,
particularly on interstates. The study estimates that earlier detection from Waze alerts
could have reduced delays by over 3500 h, saving almost $110,000 in congestion costs, and
potentially prevented 12 crashes, saving up to $23.3 million in comprehensive crash costs.
While the findings demonstrate the promise of using crowdsourced data to improve DAV
response, the authors emphasize the need for further research to develop effective real-time
detection algorithms and filtering protocols.

Li et al. [8] explored the potential of using crowdsourced traffic incident reports from
Waze to enhance highway safety analysis. Traditional reliance on police crash reports
(PCRs) has limitations, such as underreporting minor incidents. The study proposed a
methodology to eliminate redundant Waze incident reports (WIRs) and integrate WIRs with
PCRs for a more comprehensive analysis. By analyzing data from the I-35 corridor in North
Texas, the researchers found that WIRs and PCRs were spatially correlated but differed
temporally, with WIRs providing broader coverage. The integration of both data sources
identified more high-risk road segments than using PCRs alone, demonstrating the added
value of crowdsourced data in identifying crash hot spots and improving roadway safety.

Perez et al. [9] investigated the spatial and temporal distribution of road traffic ac-
cidents in Mexico City in 2016 using crowdsourced data from the Waze navigation app.
They compiled a database of accident reports using Waze data and identified high-accident
zones and roads. They found that Waze could provide insights into traffic congestion and
accident patterns.

Lin and Li [10] examined the utilization of crowdsourced data from Waze navigation
apps to predict traffic conditions following accidents. The study categorized traffic conges-
tion into four levels and proposed a hierarchical model using machine learning algorithms,
such as Random Forest, Support Vector Machine, and Neural Network, to predict the
severity and duration of traffic congestion after an accident. The model’s effectiveness is
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validated using real-time data from Beijing, showing that Neural Networks perform best in
predicting congestion duration. The study demonstrates the potential of crowdsourcing
data for real-time traffic management and highlights its advantages over traditional data
sources in terms of coverage and timely information.

Apart from the crash analysis, Praharaj et al. [11] explored the reliability of crowd-
sourced flood incident reports from Waze in Norfolk, Virginia. They combined limited
city-provided flood data with environmental and topographical factors to develop a logistic
regression model predicting the likelihood of flooding. The model achieved a prediction
accuracy of 90.5%, with 71.7% of Waze reports deemed trustworthy.

Zhang [12] evaluated the reliability and characteristics of Waze traffic data for traffic
management purposes. Specifically, they compared Waze traffic speed data with data
from traditional Remote Traffic Microwave Sensors (RTMSs) over a two-month period
on a segment of I-40 in Knoxville, Tennessee. It aimed to understand how Waze data
could complement traditional traffic data sources. The study identified factors affecting
speed differences between Waze and RTMS data, such as time of day, traffic volume, and
road segment length. It found that Waze data are particularly reliable during congested
conditions and provide valuable real-time information that can enhance traffic management
when integrated with traditional data sources.

Eriksson [13] attempted to seamlessly combine crowdsourced traffic data from Waze
with official traffic data in Stockholm, Sweden, to effectively address any gaps in traffic
coverage and enhance traffic management. It addresses the research gap of combining
dynamic crowdsourced data with static governmental data sources. The methodology
entails creating an artifact through design science research, tackling issues of data redun-
dancy and reliability, which are resolved by incorporating temporal and spatial proximity
constraints. The study found that the artifact significantly decreases redundancy and
improves reliability. However, it is constrained by the inconsistency in data quality and
their applicability, limited only to Stockholm’s circumstances.

Santos et al. [14] explored the integration of traffic accident data from Belo Horizonte’s
municipal transit company (BHTrans) and Waze. They aimed to illustrate the benefits
of combining detailed, police-reported BHTrans data with real-time, user-reported Waze
data. Over a 52-day period in 2014, they matched accidents by time (within one hour)
and location (within 50–150 m). Only 7% of accidents were reported in both datasets,
underscoring their complementarity: BHTrans data focused on severe accidents in central
areas, while Waze data included minor incidents on major roads and highways. The
integrated dataset revealed accident hotspots and patterns not apparent from either source
alone, highlighting the value of data integration for traffic safety analysis.

Amin-Naseri et al. [15] evaluated the reliability, coverage, and potential added value of
crowdsourced traffic incident reports from the Waze navigation app compared to traditional
sources such as Iowa’s Advanced Traffic Management System (ATMS) records, and third-
party traffic services vendors (e.g., INRIX, Traffic Camera Images, and Twitter texts) used
by ATMS. The study found that Waze reports covered 43.2% of ATMS records, detected
incidents on average 9.8 min earlier than a probe-based alternative, and had reasonable
geographic accuracy. The study estimated that 34.1% of Waze’s crash and congestion reports
(about 7387 incidents annually) were potential incidents not recorded by current ATMS
sources. The authors conclude that Waze reports could make significant contributions to
incident detection and are found to have potential for further complementing the ATMS
coverage of traffic conditions.

Moreover, Hoseinzadeh et al. [18] assessed the accuracy of Waze speed data by compar-
ing them with Bluetooth-based ground truth data and found that Waze data demonstrated a
prediction accuracy of nearly 85% during peak traffic hours. Goodall and Lee [19] assessed
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the accuracy of Waze crash reports by comparing them to video footage captured by traffic
cameras along a 2.7-mile stretch of urban freeway. Their analysis demonstrated a high level
of accuracy of the Waze crash reports supported by video evidence, revealing that Waze
data can be a valuable tool for transportation management.

Recently, Al Krdy et al. [20] have investigated the integration of Waze data with
Florida’s Computer-Aided Dispatch (CAD) system to enhance law enforcement and traffic
incident management. The study highlights Waze’s potential to provide earlier incident
notifications, particularly in rural areas and during nighttime hours. However, the use of
a simplified 1-mile spatial and 30 min temporal buffer for event matching may overlook
complexities associated with alerts from access roads, such as those near overpasses.
Although the authors manually reviewed and excluded alerts from access roads, this
approach may be impractical for areas with complex road geometries. Additionally, the
study relies on pre-filtered Waze alerts that have already been screened by the Florida
Department of Transportation (FDOT), limiting insights into how raw Waze data could
improve modeling accuracy.

Upon reviewing the existing literature, it becomes evident that there is a significant
research gap when it comes to accurately predicting the real-time accuracy of Waze reports.
Current studies focus on addressing the challenges of matching the historical Waze crash
reports with official data and identifying factors that affect the reliability of Waze crash
data. However, there still remains an opportunity to develop a model capable of predicting
the trustworthiness of Waze data in real time. This model would greatly improve the
utilization of Waze data in a wide range of transportation applications, including effective
and efficient incident response and traffic management.

3. Methodology
3.1. Data
3.1.1. Waze

Waze is a crowd-sourced navigation application that guides users by leveraging real-
time information contributed by its user base. Users can report traffic incidents such as
accidents, congestion, speed, and police traps, providing valuable alerts and alternative
routes to others. Additionally, users can update roads, landmarks, and house numbers
using the online map editor.

The Waze crash alert data capture incidents reported by users, including information
such as unique system ID, date/time, geographic coordinates (latitude and longitude), road
type, reliability, report description, report rating, confidence, and user feedback (“thumbs
up”). According to the Waze data feed specifications [21], the columns are described
as follows:

• Reliability: This score ranges from 0 to 10, reflecting the reliability of each alert based
on user reactions (“thumbs up”, “not there”) and the reporting user’s level. Users gain
levels (1 to 6) through contributions, with higher levels indicating more experienced
and trustworthy users. Reliability scores start at 5 and will only drop below this
threshold if a highly ranked editor submits a “not there” report, making it quite rare
for the score to fall below 5.

• Confidence: This score ranges from 0 to 5, indicating the level of positive feedback
from Waze users. Higher scores suggest higher confidence in the reported alert.

• Report Description: A description of the report provided when available.
• Road Type: This is an integer value ranging from 1 to 21, classifying different types of

roads. In this study, roads are categorized as follows (the bracketed numbers represent
these integer values, which are used to categorize and differentiate the types of roads
in the Waze data):
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- Streets: Street (1), Primary Street (2), Secondary Street (6)
- Highways and Ramps: Freeway (3), Ramp (4), Exit (11)
- Trails and Walkways: Trail (5), 4 × 4 Trail (8 and 14), Walkway (9), Pedestrian (10),

Stairway (16)
- Transportation Facilities: Ferry Crossing (15), Private Road (17), Railroads (18),

Runway/Taxiway (19), Parking Lot Road (20), Service Road (21)

• Report Rating: This is the user rank (1–6), based on the points they have accumulated
through driving distances and map editing contributions [22]. The details of each rank
(level) are as follows:

- Level 1 (New Users): Users at this level can edit maps within a 1-mile radius. All
users start at this level.

- Level 2 (Beginner Editors): Users with over 3000 map edits or those who are IGN
editors can edit maps within a 2-mile radius.

- Level 3 (Proficient Editors): Users with over 25,000 map edits can edit maps
within a 3-mile radius.

- Level 4 (Advanced Editors): Users with over 100,000 map edits can edit maps
within a 4-mile radius.

- Level 5 (Expert Editors): Users with over 250,000 map edits can edit maps within
a 4-mile radius.

- Level 6 (Waze Champs): This level requires recommendations and approval by
US Champs. Waze Champs have nationwide edited access.

• Thumbs Up: Number of positive reactions from users.

Waze crash alerts have three subtypes: (i) minor accident, (ii) major accident, and
(iii) no subtype. Major crashes involve significant damage to vehicles, severe injuries, and
potential fatalities, while minor crashes are characterized by fender benders with minor
or no injuries and no fatalities [23]. In this research, alerts with no subtype are treated as
the reference subtype for simplicity in interpretation. Moreover, the days of the week are
classified into two distinct categories: weekdays and weekends. In addition, periods of the
day are divided into distinct groups to enable a more comprehensive understanding of
variations in traffic incidents. The categories are as follows:

• AM Peak: 7 am to 9 am
• Morning Non-Peak: 9 am to 12 pm
• Afternoon Non-Peak: 12 pm to 4 pm
• PM Peak: 4 pm to 7 pm
• Evening Non-Peak: 7 pm to 9 pm
• Nighttime Non-Peak: 9 pm to 7 am

The purpose of classifying days and times is to identify and analyze variations in
traffic incidents and congestion. This should result in a more accurate understanding of
traffic patterns and enhance traffic management strategies.

3.1.2. Crash Data

New Jersey Police Crash Report, a.k.a., NJTR-1 [24]. The NJTR-1 crash report attempts
to systematically collect data regarding motor vehicle crashes in New Jersey, emphasiz-
ing critical elements such as the crash location, date/time, crash severity, driver details,
vehicle information, involved individuals, and the roadway infrastructure. The structure
is designed to guarantee the collection of thorough information regarding each crash,
utilizing 153 data blocks. This comprehensive data collection enables entities such as the
New Jersey Department of Transportation (NJDOT) and law enforcement agencies to study
crash patterns, investigate underlying causes, and enhance traffic safety initiatives.
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The crash data include crashes involving vehicles that are “in transport” and are
applicable to crashes occurring on highways, private roads, and various other properties.
Involvement of pedestrians and cyclists is recorded solely when a motor vehicle is involved
in the crash. The NJTR-1 also addresses various scenarios, such as commercial vehicle
involvement, and ensures that accurate and timely reports are submitted for every crash
investigation. These data are critical for improving traffic safety policies and infrastructure
development across the state. This helps agencies make data-driven decisions and allows
for more targeted interventions, such as road improvements, enforcement of traffic laws,
and public awareness campaigns aimed at reducing crash-related injuries and fatalities.

3.2. Methodological Framework

This section describes the comprehensive methodological framework employed in
this study, as illustrated in Figure 1. The process begins with two primary data sources:
Waze crowdsourced alerts and NJDOT’s official crash reports (NJTR-1) as discussed above
in Section 3.1. These datasets are integrated through a Density-Based Spatial–Temporal
Clustering of Applications with Noise (DBSCAN) algorithm [17] to identify matched and
unmatched alerts, categorizing them as true and false alerts, respectively. This process is
further elaborated in Section 3.3, Evaluation of Crash Alerts.

 

Figure 1. Flowchart of methodology.

Following DBSCAN labeling, Waze data undergo data preprocessing, which includes
the categorization and definition of variables, as outlined in Section 3.1.1. In the first
stage of this study, the cleaned and labeled data are used to develop a binary logit model,
aiming to identify significant factors that influence the likelihood of a Waze alert accurately
reflecting a real incident. This step is further explored in Section 3.4, Alert-Crash Matches.

The DBSCAN-labeled data were highly imbalanced with a significant prevalence of
false alerts. Therefore, in the second stage of the study, to address the class imbalance in the
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dataset, the Synthetic Minority Oversampling Technique (SMOTE) [25] is applied to balance
the DBSCAN-labeled alerts. These balanced data are then used to train and evaluate various
machine learning-based predictive models. Multiple classification algorithms—including
Random Forest [26], Decision Tree [27], AdaBoost [28], Gradient Boosting [29], and Logistic
Regression [30]—are trained and tested to forecast in real time whether a Waze alert
corresponds to an actual crash. To ensure robust model performance, Stratified K-Fold
cross-validation [31] is used for model optimization. This part is discussed in further detail
in Section 3.5, Crash Alert Prediction Model.

This integrated methodological approach enables both interpretability through the
logit model and predictive power via the machine learning model, significantly enhanc-
ing the practical application of crowdsourced traffic data in emergency response and
transportation planning.

3.3. Evaluation of Waze Crash Alerts
Matching Rate Analysis

This section examines the overall matching rates of Waze crash alerts by cross-
referencing each alert with historical crash data from NJTR-1. This research leverages
incident alerts data from Waze for 2021, 2022, and 2023, cross-referenced with actual crash
data from NJTR-1 to identify true (coded as 1) and false (coded as 0) Waze alerts.

Figure 2 depicts Waze accident alerts generated in October 2021 (a) and June 2023 (b)
throughout New Jersey for an example. On average, between 20,000 and 30,000 accident
alerts are reported each month, with numbers fluctuating throughout the year.

(a)  (b) 

Figure 2. Location of alerts: (a) October 2021; (b) June 2023.

Waze generates numerous alerts for the same crash, as reported by different Waze
users in the vicinity of the crash at different times. Figure 3 shows individual crash alerts
reported around the City of Newark and Newark Liberty Airport in January 2022. The
alerts of the same color indicate that they are generated to report the same crash within
an hour.
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Figure 3. Crash alerts near Newark and Liberty Airport.

Waze users may also report false alerts, which can be caused by a variety of reasons,
including misuse of the Waze app, misrecognition of incidents, or even GPS error on their
Waze devices. To address such practical issues, a data cleaning process is performed to
correlate the Waze crash alerts with the actual crashes and filter out false alerts by using
the Density-Based Spatial–Temporal Clustering of Applications with Noise (DBSCAN)
algorithm [17].

The DBSCAN algorithm is a non-parametric clustering method. It is applied to cluster
spatial data that contain noises. It clusters data points that are in close proximity to one
another. The proximity is determined based on a specified number of neighboring data
points within a defined radius from each individual data point. By applying this concept,
the DBSCAN algorithm can also identify data points that exhibit significant deviations
from the other datapoints within the dataset. This clustering approach effectively handles
clusters that exhibit diverse shapes and levels of noise, in contrast to other clustering
methods such as K-means and hierarchical clustering, which are more appropriate for
compact and distinctly separated spherical clusters. The DBSCAN algorithm requires
two inputs: (i) the radius of the neighborhood; (ii) the minimum number of neighbors
needed within that radius. For each data point, the count of neighboring data points
within the specified radius is determined. When the count meets or exceeds the minimum
required neighboring datapoints, the datapoint is designated as a core point. If the count
falls below the minimum number of neighboring required datapoints yet includes at least
one core point, the datapoint is classified as a border point. When the count drops below
the minimum threshold of neighboring datapoints needed and lacks any core point, the
datapoint is marked as an outlier or noise. For each core point that is not assigned to
a cluster, the DBSCAN algorithm initiates the creation of a new cluster, subsequently
grouping the borders into the cluster associated with its core point. This establishes a
sequence of interconnected points. This guarantees that all points in a cluster are connected
via a chain of dense regions.

Figure 4 illustrates the workflow for detecting matched Waze alerts, though it is not
drawn to scale. First, DBSCAN is applied for detecting Waze alerts within a specific radius
and time window around actual crash locations from NJTR-1 crash data.

In this study, DBSCAN operates with a 1 h time window to create a sphere with
a 0.5-mile radius centered around the actual crash location. This spatial and temporal
boundary encompasses all potential Waze crash alerts within the defined radius and time
frame. For example, the actual crash happens at location C, and DBSCAN identifies Waze
alerts A1, A2, A3, A4, . . ., A15 as being within the radius. Then, using OpenStreetMap,
the actual roadway distance of these Waze alerts from the crash location is determined.
Alerts that fall outside a quarter-mile distance from the actual crash location along the road
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network are filtered out. In this way, unrelated alerts are eliminated, and the matched alerts
are retained, such as A1, A2, A11, and A12, which are likely related to the actual crash at C.

 

Figure 4. Detection of matched Waze alerts.

From September 2021 to April 2022, with the inclusion of June and July 2023, a
total of 119,481 Waze alerts were recorded. Out of these, 18,667 alerts matched with
actual crashes and 100,814 unmatched, resulting in an overall matching rate of 15.6%.
Figure 5 demonstrates some selected matched cases obtained by the DBSCAN method. The
pinpoints and the dots in Figure 5 represent the actual crash locations and alerts matched
with the crash, respectively.

 

Figure 5. Example of crash–alerts matched case.

The data distribution shows that 2021 and 2022 account for 42.9% and 33.6%, respec-
tively, of the total alerts, while 2023 accounts for 23.4%. Table 1 shows the distribution of
matched and unmatched alerts and provides insights into the crash matching rate across
various months from 2021 to 2023. Throughout this time frame, Waze alert data show a con-
sistent pattern of unmatched alerts outnumbering matched alerts with actual crashes. The
highest matching rate of 19.4% was observed in December 2021, indicating that nearly 20%
of Waze alerts in this month were confirmed to be actual crashes. Moreover, October
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2021 and November 2021 also have relatively high matching rates of 19.0% and 18.5%,
respectively. In contrast, the lowest matching rate of 12.4% was observed in February 2022.
It suggests that a lower proportion of Waze alerts were matched with real crash data during
this month. Additionally, March 2022 follows closely with a matching rate of 12.0%.

Table 1. Waze alert accuracy.

Year Month Matched with
Actual Crash

Unmatched with
Actual Crash

Matching Rate
(%)

2021

September 469 2333 16.7
October 3436 14,644 19.0

November 2936 12,976 18.5
December 2814 11,702 19.4

2022

January 1677 10,399 13.9
February 1512 10,718 12.4

March 1703 12,491 12.0
April 234 1432 14.1

2023
June 1826 10,933 14.3
July 2060 13,186 13.5

Overall Matching Rate 15.6

The average matching rate in 2021 was 18.4%, whereas matching rates of 13.1% and
13.9% were observed in 2022 and 2023, respectively. This makes the overall matching rate
across all months 15.6% out of the total 119,481 Waze alerts. It suggests that while Waze
alerts are useful for detecting crashes, many alerts may not correspond to actual crash
events (about 84.4% were unmatched). It highlights the need for enhancing the matching
rate of Waze alerts to actual crashes.

Figure 6 depicts the percentage distribution of Waze crash types for matched cases,
with the total percentage of alerts indicated in parentheses. Among the total alerts, approxi-
mately 48% were “No Subtype” crashes and they accounted for only 45% of the matched
cases. In contrast, 21.6% of the total alerts were for “Major” crashes, which contributed
to a higher 26.3% of matched cases. This indicates that Waze alerts for “Major” crashes
are more likely to be matched to the actual crashes. On the other hand, “Minor” crashes,
representing 30.4% of total alerts, matched 28.9% of the time, indicating a slightly lower
matching rate.

 

Figure 6. Severity distribution in matched cases.
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Moreover, Figure 7 illustrates that Waze alerts on primary streets have the highest
matching rate, making up 30.6% of total alerts but accounting for 49.5% of matched crashes.
In contrast, freeways have the highest share of total alerts (44.2%), but only 27.4% of
matched crashes, indicating more False Positives. Ramps and streets have fewer alerts and
lower matching rates, while secondary streets show moderate matching rates, with 10.9%
of total alerts and 13.3% of matched crashes.

 

Figure 7. Distribution of road types in matched cases.

In addition, Figure 8 shows the distribution of Waze alerts across report ratings 1 to 6,
focusing on the percentages of total alerts (in parentheses) and matched alerts. Report
ratings 1 and 5 represent 20.6% and 16.8% of total alerts, respectively, but both contribute
only 18.2% of matched alerts. Rating 2 has the smallest share, with 7.1% of total alerts and
6.0% of matched alerts, while rating 4 has the highest proportion, accounting for 26.8% of
total alerts and 28.5% of matched alerts. Ratings 3 and 6 show a close alignment, with 16.1%
and 12.7% of total alerts and 16.2% and 12.9% of matched alerts, respectively, indicating a
similar distribution for these two categories.

 

Figure 8. Distribution of report ratings in matched cases.

Furthermore, Figure 9, based on matched cases only, shows that alerts with moderate
reliability (e.g., reliability is 5.0) are the most frequent, particularly with report ratings
between 3 and 5. As reliability increases from 5.0 to 10.0, the overall count of true alerts
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decreases significantly. Additionally, higher reliability scores are associated with moderate
report ratings, suggesting that alerts with higher reliability scores are not always the most
trustworthy. This supports the idea that the accuracy of crash alerts is primarily influenced
by users’ report ratings, determined by their accumulated driving distance and map editing
contributions, rather than the reliability derived from other user reactions. Furthermore, the
data indicate that advanced editors (rating 4) are the most dependable due to their expertise
and active participation, as they frequently contribute to more reliable crash reports.

 

Figure 9. Report ratings vs. reliability.

3.4. Alert–Crash Matches Analysis

To identify significant factors influencing the match of Waze alerts to crashes, a binary
logit model was developed using data collected from September 2021 to April 2022, and
from June to July 2023. The binary logit model is a type of regression model used to
predict the outcome of a binary dependent variable, which has two possible outcomes. This
model is commonly employed to analyze the relationship between a categorical response
variable (with two categories or levels) and a set of predictor variables [32]. In binary
logistic regression, the probability of success ranging from 0 to 1 is modeled. For example,
in the context of Waze alerts, 1 represents a Waze alert matched with an actual crash,
and 0 represents a Waze alert that does not match an actual crash. The model estimates
these probabilities using the logit function and is described by Equation (1) [33]:

log
(

P(Y = 1|Y)
1 − P(Y = 1|Y)

)
= β0 + β1X1 + β2X2 + . . . . . . . . . . . . . . . .. + βkXk (1)

where P(Y = 1|X) is the probability of the response variable Y being 1 given the predictors
X1, X2, . . . . . . Xk; β0 is the intercept; and β1, β2, . . . . . . βk are the coefficients for the predictor
variables. This approach uses the maximum likelihood method to estimate the coefficients.
The probability in Equation (1) can be calculated as follows:

P(X = 1|Y) = 1
1 + e−(β0+β1X1+β2X2+.................+βkXk)

(2)

For identifying significant factors, programming language R is utilized to fit the logit
model to the data. The significance of each predictor variable is assessed by examining the
p-values of the coefficients. Furthermore, the magnitude and direction of the coefficients
indicate how each predictor influences the likelihood of the outcome.
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Table 2 presents the output of the binary logit model. To identify significant factors
contributing to the accuracy of Waze alerts, a 5% significance level was employed. This
means that if the p-value in the table is less than 0.05, the corresponding variable has a
statistically significant contribution to the accuracy of Waze alerts. The analysis reveals
several significant factors influencing the matching of Waze alerts including weekdays,
specific time categories (AM/PM peaks and non-peaks), certain road types (ramps, streets,
primary streets), report ratings (Ratings 2–6), and crash type (minor and major).

Table 2. Result of logit model.

Variables Predictors Coefficient Std. Error Z-Value p-Value Odds Ratio

Intercept −8.054 43.954 −0.183 0.855 0.000

Day of the
week

Weekend 0.000 - - - -
Weekday 0.105 0.020 5.15 0.000 1.111

Time
category

Nighttime
non-peak 0.000 - - - -

AM peak 0.395 0.033 12.128 0.000 1.484
Morning
non-peak 0.211 0.034 6.265 0.000 1.235

Afternoon
non-peak 0.263 0.028 9.494 0.000 1.300

PM peak 0.316 0.028 11.091 0.000 1.371

Road type
category

Secondary
street 0.000 - - - -

Ramp −0.577 0.038 −15.026 0.000 0.562
Street −0.733 0.047 −15.505 0.000 0.480

Primary
street 0.377 0.026 14.746 0.000 1.458

Freeway −0.775 0.028 −27.944 0.000 0.461

Reliability

Reliability4 0.000 - - - -
Reliability5 5.918 43.954 0.135 0.893 371.755
Reliability6 6.084 43.954 0.138 0.890 438.914
Reliability7 6.040 43.954 0.137 0.891 419.930
Reliability8 6.028 43.954 0.137 0.891 414.761
Reliability9 6.013 43.954 0.137 0.891 408.698
Reliability10 6.017 43.954 0.137 0.891 410.502

Report
rating

Report
Rating1 0.000 - - - -

Report
Rating2 0.105 0.041 2.563 0.010 1.110

Report
Rating3 0.276 0.032 8.631 0.000 1.317

Report
Rating4 0.328 0.029 11.21 0.000 1.388

Report
Rating5 0.347 0.032 11.011 0.000 1.415

Report
Rating6 0.295 0.034 8.745 0.000 1.343

Confidence

Confidence0 0.000 - - - -
Confidence1 0.102 0.069 1.475 0.140 1.107
Confidence2 0.212 0.173 1.229 0.219 1.237
Confidence3 0.477 0.246 1.941 0.052 1.612
Confidence4 0.224 0.351 0.64 0.522 1.252
Confidence5 0.474 0.489 0.968 0.333 1.606

Crash Type
No subtype 0.000 - - - -

Minor −0.073 0.020 −3.727 0.000 0.929
Major 0.257 0.021 12.357 0.000 1.293
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The matching rate of Waze alerts is significantly influenced by the day of the week.
Specifically, alerts reported on weekdays have a positive effect (coefficient = 0.105) and their
odds ratio is 1.111, meaning that alerts on weekdays are 11.1% more likely to match real
crashes compared to those on weekends. This could be due to higher traffic volumes and
more consistent road usage patterns during weekdays, making crashes more noticeable
and easier for users to report. Moreover, weekday commuters tend to be more regular
drivers and are likely more engaged with reporting features compared to weekend drivers,
who may include more casual or occasional travelers. Additionally, weekdays may involve
more work-related and routine trips, leading to encouraged awareness of road conditions
and more timely reporting of incidents.

Different time categories also significantly affect the Waze alert matching rate. Com-
pared to nighttime non-peak hours, time periods around peak hours, including AM peak,
morning non-peak, afternoon non-peak, and PM peak, positively increase the likelihood
of Waze alerts being matched. For instance, alerts during AM peak hours are 48.4% more
likely to be matched, while morning non-peak hours show a 23.5% increase, afternoon
non-peak hours a 30% increase, and PM peak hours a 37.1% increase in matching actual
crashes compared to nighttime non-peak hours. This highlights the importance of user
engagement during these periods. The reason for this could be that during peak hours,
roads are busier, and drivers are more attentive to traffic conditions, making crashes more
noticeable and more likely to be reported accurately by a larger number of users.

Additionally, the type of road significantly impacts the matching rate of Waze alerts.
Compared to secondary streets, alerts reported on primary streets have a positive effect
(coefficient = 0.377) with an odds ratio of 1.458, meaning alerts on primary streets are 45.8%
more likely to match real crashes. In contrast, alerts on ramps, streets, and freeways have
negative effects, meaning those alerts are significantly less likely to match actual crashes.
Alerts on ramps, streets, and freeways are, respectively, 43.8%, 52.0%, and 53.9% less
likely to be matched compared to secondary streets. In summary, Waze alerts on primary
streets tend to have a higher matching rate, while alerts on other road types, particularly
freeways, tend to have a lower matching rate. This implies that users are more aware
or active in reporting crashes on the primary streets. However, in the case of freeways,
the higher speed limits make it more difficult for drivers to report crashes in real-time, as
they have less time to observe and submit detailed reports while maintaining safe driving.
Additionally, freeways lack frequent stopping points like traffic signals or stop signs,
reducing opportunities for drivers to slow down or stop to make reports. Furthermore,
drivers may be less inclined to engage with reporting features while navigating freeways,
especially given the higher speeds and pressure to continue moving. This is particularly
true for minor crashes, where the lack of significant disruption makes such crashes less
noticeable and less likely to prompt reporting, further affecting the matching rate of
Waze alerts.

The report rating also has a significant impact on matching rates. Compared to alerts
with a report rating of 1, those with higher ratings are more likely to match real incidents.
For example, a report rating of 2 has an odds ratio of 1.110, indicating an 11.0% increase
in matching rate. Similarly, a report rating of 3 shows a 31.7% increase, while a report
rating of 4, 5, and 6 increases the likelihood of matching rate by 38.8%, 41.5%, and 34.3%,
respectively. Although the coefficient has dropped in the case of report rating 6 compare to
report ratings 4 and 5, it can be generalized that higher report ratings are strongly correlated
with more matched Waze alerts, as report ratings are determined based on the experience
and expertise of the users.

Lastly, the type of crash reported significantly influences the Waze alert matching rate.
Alerts for major crashes have a positive effect compared to the “No Subtype” crash type.
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Alerts for major crashes are 29.3% more likely to match real incidents. On the other hand,
alerts for minor crashes have a negative effect (coefficient = −0.073, odds ratio = 0.929),
indicating that they are 7.1% less likely to match real crashes. This suggests that reports
involving major crashes tend to be more matched, while minor crash reports are slightly
less reliable. It underscores the increased attention and matching rate for more severe
crashes. The reason for this could be that major crashes are more visible and cause greater
disruption, prompting more users to notice and report them, whereas minor crashes may
go unnoticed or be seen as less urgent to report.

In summary, day of the week, time periods, road type, report rating, and crash type
play a significant role in determining the matching rate of Waze alerts, with some factors
positively influencing accuracy and others reducing it.

3.5. Crash Alert Prediction Model

In this study, multiple machine learning based-predictive models were developed and
evaluated to forecast whether a Waze alert corresponds to a real incident. In this section,
matched Waze alerts with actual crashes are referred to as “true alerts,” whereas unmatched
alerts are termed “false alerts.” This setup frames the task as a binary classification problem.

The process involved careful data preprocessing, model selection, hyperparameter
tuning, and performance evaluation to ensure the development of a robust and reliable
predictive model.

Feature scaling was performed using Standard Scaler [34] to ensure that all input
variables had a standard normal distribution. The training data were fitted and transformed,
and the same scaling parameters were applied to the test data. Moreover, the Waze data
utilized in this study were highly imbalanced, with a significant prevalence of false alerts.
To deal with this, the Synthetic Minority Oversampling Technique (SMOTE) [25] was
utilized to ensure a balanced distribution of Waze data. This method guarantees that the
dataset maintains a balanced representation of true and false alerts. In addition, an 80–20
train–test split using the train–test-split function from the scikit learn package (version 1.6.1)
in Python 3.11.7 [35] was utilized to create training and testing datasets while maintaining
the class distribution through stratified sampling. To ensure the reproducibility of the model
results, random seeds were set to 1 at each stage where necessary, providing consistency in
the outcomes.

Multiple machine learning models including Random Forest [26], Decision Tree [27],
AdaBoost [28], Gradient Boosting [29], and Logistic Regression [30] were developed, and
then, their performance was evaluated. Each model was paired with a set of hyperparam-
eters tailored to its specific characteristics. Considering computational efficiency, hyper-
parameter optimization was conducted using Randomized Search CV [36] with 10-fold
Stratified K-Fold cross-validation [31] to ensure robustness. This step leveraged parallel
processing and focused on hyperparameters with the most significant impact on model
performance. The key hyperparameters explored for each model included the following:

• Random Forest: Number of estimators, splitting metric (criterion), maximum depth,
minimum samples required for split and leaf, and class weight [37].

• Decision Tree: Splitting metric (criterion), maximum depth, and minimum samples
required for split and leaf [38].

• AdaBoost: Number of estimators and learning rate [39].
• Gradient Boosting: Number of estimators, learning rate, maximum depth, maximum

features, loss function, subsampling fraction, splitting metric, tolerance, minimum
samples required for split and leaf, validation fraction, and early stopping thresh-
old [40].
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• Logistic Regression: Regularization strength (C), penalty type, solver, tolerance, maxi-
mum iterations, and class weight [41].

The prediction performance of the developed machine learning models with optimal
hyperparameters was evaluated on the test dataset using several performance metrics
including accuracy, precision, recall, and F1-score derived from confusion matrix (Table 3).
Additionally, the Precision–Recall (PR) curve and the Receiver Operating Characteristic
(ROC) curve [42], were used to further assess model performance. The metrics are defined
as follows:

• Accuracy: Accuracy refers to how many of the predictions made by a model are correct.
It is the ratio of the number of correct predictions to all the predictions. It is calculated
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Table 3. Confusion matrix.

Predicted Values

Negative Positive

Actual Values
Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

• Precision: Precision indicates the proportion of instances predicted as positive by the
model that are actually positive. It is given by the following:

Precision =
TP

TP + FP
(4)

• Recall: Recall measures the proportion of actual positive instances that the model
correctly identified. It is calculated as follows:

Recall =
TP

TP + FN
(5)

• F1-Score: The F1-score is the harmonic mean of precision and recall, offering a single
metric that weighs both precision and recall in a balanced way. The formula is
as follows:

F1-Score= 2 × Precision × Recall
Precision + Recall

(6)

• Precision–Recall (PR) Curve: The PR curve is constructed by plotting precision against
recall for various threshold values. The Area Under the PR curve (AUC-PR) is a
common metric that summarizes the performance of the model across all possible
thresholds. A higher AUC-PR score indicates a better performing model, with values
closer to 1.0 indicating higher precision and recall.

• Receiver Operating Characteristic (ROC) Curve: This is another graphical represen-
tation utilized to assess the performance of a binary classifier. It is constructed by
plotting the True Positive Rate (TPR), also known as recall, on the y-axis, against the
False Positive Rate (FPR), defined as follows, on the x-axis. The Area Under the ROC
curve (AUC-ROC) summarizes the ability of a classifier to distinguish between the
positive and negative classes. An AUC-ROC value of 1 indicates perfect performance,
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while a value of 0.5 suggests that the model is no better than random guessing. The
formulas for calculating TPR and FPR are as follows:

True Positive Rate (TPR) =
TP

TP + FN
(7)

False Positive Rate(FPR) =
FP

FP + TN
(8)

Among the models developed and validated, the optimal configurations of hyperpa-
rameters yielded varying levels of accuracy. The Random Forest and Gradient Boosting
models emerged as top performers, achieving high F1-scores, indicating their suitability
for this classification task. As demonstrated in Table 4, the Random Forest model achieved
an accuracy of 82.5%, a precision of 81.4%, a recall of 84.1%, and an F1-score of 82.8%,
indicating its capability to reliably classify true incidents and false alerts. Similarly, the
Gradient Boosting model demonstrated competitive performance, with slightly lower
metrics than Random Forest but still suitable for the classification task. Decision Tree also
showed comparable predictive capabilities. In contrast, models such as Logistic Regression
and Ada Boost exhibited lower recall and F1-scores. This suggests that while these models
were capable of correctly predicting the majority of true alerts, they were less effective at
identifying false alerts, leading to a drop in overall performance.

Table 4. Summary of the evaluation metrics for all models.

Randomized Grid Search Result Performance on Test Data

Model Best Score Best Parameters Accuracy Recall Precision F1-Score

Random Forest 82.5%

n estimators = 80; min samples split = 5;
min sample leaf = 1; max depth = 100;

criterion = entropy; class
weight = balanced; bootstrap = false

82.5% 84.1% 81.4% 82.8%

Decision Tree 80.1%
splitter = best; min samples split = 2;

min samples leaf = 2; max depth = 30;
criterion = log loss

80.2% 81.8% 79.1% 80.4%

Ada Boost 72.0%
n estimators = 30; learning rate = 1.0;
estimator = Decision Tree Classifier

(max depth = 5)
72.0% 69.7% 72.9% 71.2%

Gradient Boosting 81.8%

warm start = false; validation
fraction = 0.2; tolerance = 0.001;
subsample = 1.0; n iteration no

change = 10; n estimators = 200; min
samples split = 10; min samples leaf = 1;
max features = 0.8; max depth = 20; loss:

log loss; learning rate: 0.1; criterion:
squared error; ccp alpha: 0.0

81.8% 84.5% 80.2% 82.2%

Logistic Regression 58.9%
tolerance: 0.001; solver: lbfgs; penalty:

L2; max iteration: 200; class weight:
balanced; C: 2.0

59.3% 58.5% 59.3% 58.9%

Model Performance Analysis

The confusion matrix, classification metrics, feature importance, PR curve, and ROC
curve results provide detailed insights into the ability of the three models—Random Forest,
Gradient Boosting, and Decision Tree—to distinguish between true and false alerts effectively.

• Classification Metrics: The classification metrics for precision, recall, and F1-score
for both true and false alerts on the test data obtained from the three models are
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summarized below. The results highlight the performance of each model in identifying
true alerts (Class 1) and false alerts (Class 0), with performance across all metrics shown
in Figure 10.

     
(a)  (b)  (c) 

Figure 10. Classification report metrics. (a) Report metrics for Random Forest; (b) report metrics for
Gradient Boosting; (c) report metrics for Decision Tree.

Based on classification metrics, Random Forest emerges as the best-performing model,
achieving the highest overall accuracy of 83%. It excels in both precision and recall for
Class 0 (false alerts) and Class 1 (true alerts). For Class 0, it achieves 84% precision and
81% recall, and for Class 1, it reaches 81% precision and 84% recall, with a strong F1-score
of 82% for false alerts and 83% for true alerts. These results demonstrate a solid balance
between minimizing False Positives and maximizing the detection of true alerts, making it
the most reliable model among the three.

Gradient Boosting, with an overall accuracy of 82%, performs competitively but
slightly lags behind Random Forest. For Class 0 (false alerts), it achieves 84% precision
and 79% recall, resulting in an F1-score of 81% for false alerts. For Class 1 (true alerts),
it reaches 80% precision and 84% recall, resulting in an F1-score of 82% for true alerts.
Although it has similar recall performance for Class 1 to Random Forest, its slightly lower
precision for Class 1 and slightly lower F1-score for Class 0 lead to a marginally lower
overall performance compared to Random Forest.

Decision Tree, with an overall accuracy of 80%, has the lowest performance among the
three models. For Class 0 (false alerts), it achieves 81% precision and 79% recall, while for
Class 1 (true alerts), it achieves 79% precision and 82% recall, with an overall F1-score of
80%. While the Decision Tree model performs reasonably well, its overall lower precision
and recall compared to the other two models make it less effective at both detecting true
incidents and avoiding false alerts.

Therefore, based on the overall performance, Random Forest emerges as the best
model, demonstrating superior accuracy, precision, recall, and F1-score compared to Gradi-
ent Boosting and Decision Tree. Random Forest consistently performs well in identifying
true and false alerts, making it the most reliable model for this task. While Gradient
Boosting provides competitive results, particularly in recall, Decision Tree has the lowest
performance across all metrics, particularly in precision and F1-score for true alerts.

• Confusion Matrix: The confusion matrix as shown Figure 11 depicts the distribution
of predictions for the test set across the three models. The Random Forest model
demonstrates a strong ability to distinguish between true and false alerts. The matrix
shows a high number of True Positives (TPs) for Class 1 (true alerts) (15,968), indicating
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that the model accurately identifies real incidents. Similarly, the True Negatives (TN)
for Class 0 (false alerts) (15,459) are also high, demonstrating effective detection of
false alerts. However, it still has some False Positives (FP) (3643) and False Negatives
(FN) (3013), suggesting that there is some misclassification, particularly in predicting
false alerts.

     
(a)  (b)  (c) 

Figure 11. Confusion matrix. (a) Confusion matrix for Random Forest; (b) Confusion matrix for
Gradient Boosting; (c) Confusion matrix for Decision Tree.

The Gradient Boosting model shows a similar trend but with slightly more False
Positives (FP) (3969) compared to Random Forest. The number of True Positives (TP)
(16,030) for Class 1 (true alerts) is almost identical to Random Forest, showing that the
model also performs well in detecting true incidents. Additionally, it has slightly fewer
False Negatives (FNs) (2951) than Random Forest, indicating that Gradient Boosting does
fewer mistakes in identifying true alerts compared to Random Forest. True Negatives (TNs)
(15,133) are also comparable to Random Forest, but the increase in False Positives (FPs) and
a slight decrease in True Negatives (TNs) suggest slightly lower performance in correctly
identifying false alerts compared to Random Forest.

The Decision Tree model, while effective, has a relatively weaker performance in
comparison to Random Forest and Gradient Boosting. The True Positives (TPs) for Class 1
(15,529) are slightly lower than the other two models, and it also has the highest number
of False Positives (FPs) (4097) and False Negatives (FNs) (3452). This indicates that the
Decision Tree is less effective at both identifying true incidents and minimizing false alarms
compared to Random Forest and Gradient Boosting. The True Negatives (TN) for Class 0
(15,005) are also the lowest among the three models.

Overall, based on the confusion matrices, Random Forest outperforms both Gradient
Boosting and Decision Tree in terms of correctly identifying both true alerts and false
alerts. Gradient Boosting follows closely but has a higher False Positive (FP) rate than
Random Forest, suggesting it may misclassify a higher number of false alerts. Decision
Tree lags behind, with more misclassifications in both classes, which makes it less effective
for this task.

• Precision–Recall (PR) Curve: The Precision–Recall (PR) curves for the three models—Random
Forest, Gradient Boosting, and Decision Tree—are shown in Figure 12. The Area
Under the Curve (AUC) score for each model provides valuable insight into its overall
performance in distinguishing between true and false alerts.
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(a)  (b)  (c) 

Figure 12. The Precision–Recall (PR) curves. (a) PR curve for Random Forest; (b) PR curve for
Gradient Boosting; (c) PR curve for Decision Tree.

Random Forest shows a relatively high AUC score of 0.88, indicating good overall
performance in balancing precision and recall. The PR curve for Random Forest demon-
strates a smooth, gradual decline in precision as recall increases, which suggests that it can
maintain a decent level of precision while detecting more true alerts. This model performs
well in both minimizing False Positives and identifying True Positives.

Gradient Boosting exhibits the highest AUC score of 0.90, reflecting its superior ability
to balance precision and recall. The PR curve shows a similarly smooth decline, but with
a slightly better retention of precision at higher recall rates compared to Random Forest,
which highlights its strength in identifying true alerts while maintaining a high precision.
This model stands out with its slightly better performance in terms of recall, making it
more effective in detecting true alerts.

Decision Tree has the lowest AUC score of 0.86 among the three models, which
indicates that it is less effective in distinguishing true and false alerts. The PR curve for
Decision Tree also declines more steeply compared to the other two models, suggesting
that as recall increases, precision drops more significantly. This behavior indicates that
Decision Tree is less efficient at identifying true alerts while keeping False Positives at bay,
making it the least effective model for this task.

These findings suggest that Gradient Boosting is the most suitable model for this task,
with Random Forest also performing well but slightly behind in precision–recall trade-offs.
Decision Tree, while still useful, shows the least performance in this comparative analysis.

• Receiver Operating Characteristic (ROC) Curve: The Receiver Operating Characteristic
(ROC) curves for Random Forest, Gradient Boosting, and Decision Tree, as shown in
Figure 13, provide a clear picture of how well each model distinguishes between true
and false alerts. The Area Under the Curve (AUC) for each model is used to evaluate
the model’s ability to discriminate between the positive and negative classes, with
higher AUC scores indicating better performance.

Random Forest demonstrates a strong ROC curve with an AUC score of 0.90, which
indicates excellent performance in distinguishing between true and false alerts. The curve
is steep, showing that the model quickly achieves a high True Positive Rate (TPR) while
keeping the False Positive Rate (FPR) low, which suggests high sensitivity and specificity
in detecting true incidents.
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(a)  (b)  (c) 

Figure 13. The Receiver Operating Characteristic (ROC) curves. (a) ROC curve for Random Forest;
(b) ROC curve for Gradient Boosting; (c) ROC curve for Decision Tree.

Gradient Boosting also performs excellently, with an AUC score of 0.90, matching
Random Forest. The ROC curve for Gradient Boosting closely resembles that of Random
Forest, with a rapid increase in True Positive Rate (TPR) and a low False Positive Rate
(FPR), demonstrating that it has similar capabilities in accurately identifying true alerts
while minimizing false alarms.

Decision Tree has the lowest AUC score of 0.86, indicating a lower ability to discrimi-
nate between true and false alerts compared to Random Forest and Gradient Boosting. The
ROC curve for Decision Tree shows a less steep rise in the True Positive Rate (TPR), with
a more gradual increase, suggesting that it is less effective at achieving a high TPR while
maintaining a low False Positive Rate (FPR).

Therefore, the analysis of the ROC curves highlights the robustness of Random Forest
and Gradient Boosting while suggesting that Decision Tree may not perform as effectively,
especially when dealing with more complex classification tasks.

• Feature Importance: Figure 14 represents the importance of individual features in
predicting true and false alerts for all three models. The feature importance results
for Random Forest, Gradient Boosting, and Decision Tree (Figure 14) show consis-
tent trends, with the Hour feature dominating in importance across all three models.
This suggests that the time of day is a key determinant in predicting true and false
alerts. Report Rating and Day of Week are also among the top features for all models,
highlighting their influence in distinguishing between alerts. On the other hand,
lower-ranked features like Crash Subtype, Year, and Confidence contributed mini-
mally, suggesting that they may be less relevant for this classification task. These
findings provide actionable insights for refining data collection efforts and highlight
the potential for reducing dimensionality in future models by focusing on the most
impactful features.

However, differences in feature importance scores across models are evident. For ex-
ample, Gradient Boosting assigns slightly more importance to Report Rating than Random
Forest and Decision Tree, indicating that Gradient Boosting may place more weight on
user-generated ratings in predicting alerts. Random Forest appears to prioritize Hour more
than the other two models, suggesting it may capture temporal patterns more effectively.
The Decision Tree model, while consistent with the top features, shows slightly less empha-
sis on Report Rating, which may be due to the model’s decision-making process, which is
more prone to overfitting and might rely on simpler, more interpretable rules.
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Figure 14. Importance of individual features. (a) Obtained from Random Forest; (b) obtained from
Gradient Boosting; (c) obtained from Decision Tree.

These differences in feature importance scores can be attributed to the distinct nature
of each model: Random Forest aggregates multiple decision trees, Gradient Boosting
optimizes sequentially, and Decision Tree builds a single tree, each affecting how features
are weighted and interacted with during training.

To recapitulate, based on the results from various evaluation metrics, including preci-
sion, recall, F1-score, overall accuracy, confusion matrix, PR curve, and ROC curve, Random
Forest emerges as the most reliable model, achieving the highest overall accuracy (83%) and
demonstrating excellent performance in distinguishing between true and false alerts. Gra-
dient Boosting closely follows, with a high AUC in both the PR curve and ROC curve (0.90),
showing strong predictive power, particularly for true alerts. Decision Tree, while effective,
lags behind with a lower AUC score (0.86) and lower precision and recall compared to the
other models. These findings highlight that Random Forest and Gradient Boosting are the
most robust models for this classification task, while Decision Tree provides a simpler but
less effective approach.

4. Conclusions
This study presents a comprehensive framework for utilizing Waze crowdsourced

crash alerts in conjunction with official crash reports (NJTR-1) from the New Jersey Depart-
ment of Transportation (NJDOT) to improve real-time incident detection and prediction
accuracy. The methodology incorporates several stages, beginning with the integration of
Waze alerts and NJTR-1 crash reports through the Density-Based Spatial–Temporal Cluster-
ing of Applications with Noise (DBSCAN) algorithm to identify matched and unmatched
alerts, categorizing them as true and false alerts, respectively. This DBSCAN labeling is
followed by the development of a binary logit model to identify key predictors of alert
accuracy. In the second stage, the study addresses class imbalance through the Synthetic
Minority Oversampling Technique (SMOTE) and applies various machine learning algo-
rithms, including Random Forest, Decision Tree, AdaBoost, Gradient Boosting, and Logistic
Regression, to predict whether a Waze alert reflects an actual crash.

To identify significant factors influencing the match of Waze alerts and actual crashes,
a binary logit model was constructed using data from September 2021 to April 2022 as
well as from June and July 2023, revealing several significant predictors, including day of
the week, time categories around peak hours, road type, report ratings, and crash type.
Specifically, the likelihood of Waze alerts being matched increases during weekdays, peak
hours, and on primary streets, while higher user report ratings and major crashes also
contribute positively to alert matching rates. This suggests that user engagement is higher
around peak hours, possibly due to increased traffic and the need for real-time information.
The finding that alerts during weekdays and on primary streets are more matched may
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reflect users’ familiarity with street-level conditions and their ability to provide more
precise information. Higher report ratings are strongly associated with improved alert
matching rate, though the data suggest diminishing returns beyond a certain rating level,
indicating a complex relationship between user ratings and matching rate. This emphasizes
that while user ratings are valuable, their interpretation requires careful consideration.
Additionally, the significant matching rate of alerts for major crashes underscores the
importance of severity in user reporting. Major incidents likely draw more attention,
cause more disruptions, and thereby prompt more matched and timely reports from users,
enhancing the reliability of these alerts.

To further enhance the utility of Waze data, machine learning-based predictive models
were developed to classify Waze alerts as true or false incidents. Among the models
evaluated, Random Forest and Gradient Boosting emerged as the most robust models
across various metrics for this classification task. The Random Forest model achieved the
highest performance, with an accuracy of 83%, an F1-score of 82.8%, and an Area Under the
ROC Curve (AUC-ROC) of 0.90, underscoring its suitability for this binary classification
task. Gradient Boosting followed closely, with a high AUC score of 0.90 in both the PR
curve and ROC curve, demonstrating its strong ability, particularly in predicting true alerts.
However, it showed slightly lower precision for Class 1 (true alerts) at 80% and a lower
F1-score for Class 0 (false alerts) at 81% compared to Random Forest, suggesting potential
areas for improvement in reducing false alerts and further refining the model’s ability to
distinguish between true and false incidents. Analysis of the feature importance revealed
that factors such as time of day, report rating, and road type were critical for prediction
accuracy across all the models. This predictive modeling framework not only complements
the binary logit analysis but also provides a robust tool for real-time decision-making,
enabling transportation agencies to deploy resources more effectively and improve traffic
management systems.

While this study presents a solid foundation for leveraging crowdsourced data in traffic
incident detection, several limitations must be acknowledged. First, the study is based on
data from specific time periods (September 2021 to April 2022 and June to July 2023). This
limited timeframe may not fully capture seasonal variations in traffic patterns or account
for long-term trends. Second, despite the application of SMOTE, the inherent imbalance
in the dataset (with a significant prevalence of false alerts) poses a challenge for model
training and may affect model generalizability. Third, the study does not incorporate
potential influencing factors such as weather conditions or user demographics, which may
play a significant role in the accuracy of Waze alerts. Finally, the models developed in this
study were trained on data from New Jersey and may not be directly applicable to other
regions without further adaptation to local traffic patterns and reporting behaviors.

Overall, the findings underscore the value of user engagement and the critical role
of specific contextual factors in enhancing the matching rate of Waze alerts. While the
current study analyzes data from September 2021 to April 2022 and June to July 2023, future
research could delve into the seasonality of Waze alerts to identify any temporal trends
affecting the matching rate. Future work also could explore the integration of additional
variables, such as weather conditions or user demographics, to further refine predictive
models and improve real-time traffic incident reporting systems. Additionally, leveraging
machine learning techniques to dynamically adjust the weight of user ratings based on
historical matching rate could further optimize the reliability of crowdsourced traffic alerts.
Moreover, the current study does not explicitly discuss the use of crowdsourced data as
the primary basis for determining emergency vehicle dispatch. Therefore, future work
could explore how the proposed predictive model can assist government agencies, such
as NJDOT, in making rapid and precise data-driven decisions regarding the dispatch of
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Traffic Incident Management (TIM) units to alleviate the effects of non-recurrent congestion
caused by unexpected events.
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