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A B S T R A C T

Shared e-scooters have become a popular alternative for short trips and can serve as a first- and last-mile 
connector to transit. This study investigates the factors motivating e-scooter users to connect to public transit 
through the analysis of 48,301 e-scooter trips in 20 US cities. While most e-scooter studies, to date, rely on geo- 
spatial assumptions to assess whether a transit connection was made, this study uses rider survey data where 
users reported transit connections upon ending their e-scooter trip. Presented during the parking process, the 
rider survey asked when the decision to use the e-scooter was made. Responses were analyzed using a binary 
logit model on the decision to use e-scooters in connection to transit. The model includes urban and built 
environment characteristics to control for heterogeneity across urban spaces. People who decide to use an e- 
scooter spontaneously are found to be more likely to connect to transit than those who plan their trip in advance. 
This research provides novel insights into modal substitution, demonstrating how an e-scooter trip may sub
stitute for just a portion of a transit trip rather than the full trip. Respondents were segmented into four groups 
based on their propensity for connecting with public transit: complements (20.5%), substitutes (3.2%), no 
interaction (72.9%), and mixed effects (3.3%). Trips that substituted for transit averaged 1.82 miles, a statisti
cally significant longer distance than those complementing transit trips or that had no transit interaction. We 
conclude that these trips may otherwise have been made by rideshare, and previous assessments have over
estimated the modal substitution of e-scooters for transit. Among the 6.5% of trips for which respondents say 
they would have used transit if e-scooters were not available, approximately half connected to transit before/ 
after using the e-scooter, suggesting a more nuanced adjustment in how e-scooters complement the use of transit.

1. Introduction

The first shared e-scooters appeared on the streets of Santa Monica, 
California in September 2017. Within a year of their introduction, this 
new form of micromobility was already operating in 65 cities across the 
US (Irfan, 2018), and its popularity continued to steadily grow reaching 
86 million annual rides in the country in 2019. The onset of the COVID- 
19 pandemic led to a dramatic decline in shared e-scooter trips, falling to 
about 32 million (Shared Micromobility in the US and Canada: 2022, 
2022). By 2022, while annual trips had risen to 57 million, ridership had 

not recovered to its pre-pandemic levels. In 2023, trip volumes reached 
an all-time high of 172 million (NABSA, 2024). The number of systems 
with e-scooters has steadily increased year-over-year, rising from 151 in 
2019 to 265 in 2023 (NABSA, 2022; NABSA, 2023). The use of shared e- 
scooters has been often considered an attractive way to promote alter
natives to driving over short distances (at least in North American cities, 
see the discussion in (Wang et al., 2023)). According to 2022 US Na
tional Household Travel Survey (NHTS) data, 39 % of trips were under 3 
miles, of which 63.4 % were made by automobiles (cars, SUVs, taking a 
taxi and/or ride-hailing services). While at least a portion of these short 
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trips could not be made with other means of travel alternative to the use 
of cars (e.g. short trips that are part of a longer tour for which a car is 
required), there is potential for some mode shift for at least some of these 
trips. E-scooters and other micromobility options could play a crucial 
role in supporting this shift away from cars, including when used as a 
first-/last-mile service to expand the catchment area of public transit.

The inquiry into whether and how shared e-scooters stimulate transit 
use holds crucial significance for urban policy. Existing evidence sug
gests that e-scooter usage not only substitutes for private car and ride
share trips but also impacts trips on public transit (Meroux et al., 2022; 
Wang et al., 2023). E-scooters can also be a complementary mode to 
public transit, serving as a first- and last-mile connector mode, but usage 
patterns vary greatly by city, in terms of the type of users, locations 
where first/last access trips are observed, and the volume of trips (Bai 
and Jiao, 2020; Li et al., 2022). Many studies have attempted to assess 
mode substitution and complementarity patterns; however, a notable 
gap in understanding persists concerning the reasons and circumstances 
influencing individuals to use e-scooters as an access mode for con
necting to transit. This study addresses this research gap.

Our research investigates the factors that influence the interactions 
between the use of shared e-scooters and public transit. While most e- 
scooter studies, to date, rely on geo-spatial assumptions to assess 
whether a transit connection was made, this study uses rider survey data 
where users reported transit connections immediately upon ending their 
e-scooter trip. It explicitly asks respondents if they connected to transit 
before or after using the e-scooter. The unique data collection approach 
affords us valuable insights into the nuanced interplay between these 
two modes of transportation. In line with Yang et al. (2025), this survey 
also represents an exploratory research into the users’ decision-making 
process for using an e-scooter. Riders were asked how far in advance of 
their trip they decided to use the e-scooter. Through multivariate anal
ysis, we explore how the likelihood of e-scooter users connection to 
transit is explained by these factors. We find that when the user planned 
to use an e-scooter, travel time, the reason for choosing to use an e- 
scooter, built environment characteristics such as population and 
employment density of the locations where the trip was made and the 
time of day when the trip was taken are all significant explanatory 
factors for e-scooter trips connecting to transit.

Our study contributes to the literature in two main dimensions. First, 
using a large dataset consisting of trip-level and survey data from mul
tiple cities across the United States, while controlling for built envi
ronment characteristics, we investigate the conditions under which an e- 
scooter trip is likely to involve a transit connection, given that someone 
decides to take an e-scooter trip. This approach helps assess which e- 
scooter trips are likely to connect to transit, based on location, trip 
duration, time of day, motivating factors and when the decision to use an 
e-scooter was made. Second, the study enhances the understanding of 
the extent to which e-scooters substitute or complement the use of 
transit. This interaction, which is often not fully understood, is clarified 
in our study through novel evidence suggesting that users who claim to 
replace transit trips with e-scooters often also report connecting with 
transit on the same trip. This means a more complex form of inter
modality, where e-scooter users may substitute for a segment of their 
transit trip but ultimately still connect to transit for the remaining 
portion of the trip. This study is crucial for understanding how trip-level 
features and built environment characteristics can be sources of het
erogeneity in people’s decisions to integrate shared e-scooters with 
public transit.

The remainder of this paper is structured as follows: the next section 
provides a literature review on the existing research about shared e- 
scooter use and whether e-scooter trips are found to substitute or com
plement transit and their scope as a first-and-last mile connection for 
transit trips. The following section provides details and insights about 
the data and methods we have used. In the next section, we describe 
results and discussion, where we share estimates of the model and their 
interpretations. Finally, the last section discusses the conclusions of our 

research, where we discuss key takeaways, limitations and the future 
direction in this field of research.

2. Literature review

Shared e-scooters are found to have either substitution or comple
mentary effects on existing travel demand patterns at both the individ
ual and societal levels. Current studies attempted to understand the 
factors affecting the usage of shared e-scooters based on two approaches: 
1) analyzing the spatiotemporal patterns of shared e-scooters using data 
collected in different geographic contexts; 2) conducting behavioral 
surveys to explore who are more likely to ride shared e-scooters and 
capture the impacts of shared e-scooters on the use of other transport 
modes. Studies suggest that the factors influencing the use of shared e- 
scooters are similar to other shared micromobility services, i.e., station- 
based and dockless bikesharing. For example, travel distance is one of 
the most important influential factors determining the rate at which the 
bicycle is a feeder mode to the metro (Chen & Cheng, 2016; Ma et al., 
2018). One study using Sacramento, California as a case study area 
shows that middle- and high-income individuals, and students are more 
likely to use bike-share to connect to transit (Mohiuddin et al., 2023). 
Another study highlighted how female, older, and low-income transit 
commuters are less likely to use bikeshare to access metro services than 
their counterparts (Ji et al., 2018). Through market segmentation of 
bike-share users, Mohiuddin et al. (2024) show a segment of users who 
are mainly transit users and frequently use bike-share to connect to 
transit. Wang et al. (2023) provide a relatively up-to-date review of the 
literature for modal shifts associated with the use of shared e-scooters 
and report that the substitution rate of riding e-scooters instead of 
making auto trips averages 25–40 % of e-scooter trips. Moreover, the 
literature shows huge differences between geographic contexts, with 
public transit being more often replaced by the use of e-scooters in Eu
ropean countries (where the mode share of transit is higher). Instead, 
studies based on the analysis of behavioral survey data reveal that public 
transit trips are not likely to be replaced by e-scooter rides in most cities 
in the US (with only 3–18 % of e-scooter trips replacing the use of 
transit), also due to the limitedness of public transit services in many US 
locations. However, in cities where public transit is more commonly 
used, compared to the US average, the substitution rates of e-scooters 
with transit can be up to 34 %. Guo and Zhang (2021) highlighted how 
survey results from various cities show that shared e-scooters have great 
promise for replacing auto trips. For example, 48.6 % of shared e-scooter 
trips would have been completed using a private vehicle if shared e- 
scooters were unavailable in Portland (Guo and Zhang, 2021; PBOT, 
2018); this value is 42.6 % in Chicago (City of Chicago, 2020; Guo and 
Zhang, 2021).

Previous studies have shown how bikeshare users tended to be 
young, wealthy, white males, but e-scooters attract a higher proportion 
of low-income and minority riders (Beale et al., 2022). Many geospatial 
analyses conducted in Europe and America (Bai & Jiao, 2020; Caspi 
et al., 2020; Lu et al., 2021; Zhu et al., 2020) find that shared e-scooter 
trips in general are usually not used for commuting, and access to public 
transit is positively associated with higher shared e-scooter usage (Bai & 
Jiao, 2020). One recent study reported that approximately one third of 
shared e-scooter trips in Indianapolis could compete with bus service 
and were concentrated in the local downtown. However, another third 
were complementary trips, and these trips primarily happened outside 
downtown (Luo et al., 2021). Conversely, another study conducted in 
Austin found a positive association between shared e-scooters and 
transit in the downtown area, but a negative relationship outside (Lu 
et al., 2021). The results of these two studies suggest that shared e- 
scooters may have a positive or negative impact on public transit 
ridership, depending on local circumstances. Another group of studies 
relied on behavioral surveys and summarized the influence of factors 
such as gender, age, income, education background, residence status, 
attitudes toward road infrastructure, trip purposes, trip distance, and 
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duration, and temporal patterns (Wang et al., 2023). There were mixed 
results from these surveys, which warrant further investigation.

Several European studies suggest that shared e-scooters have a 
greater displacement effect on public transit trips than their counter
parts in North America (Li et al., 2022). There can be multiple reasons 
for this finding, as public transit trips account for a smaller proportion of 
total trips in the US, and they are typically longer than public transit 
trips in European cities. A city-level understanding of shared e-scooter 
substitution effects would be desirable. A study conducted in three 
French cities showed that e-scooters are preferred over public trans
portation due to their rapidity and ability to travel door-to-door (Krier 
et al., 2019), suggesting they often substitute for public transit for this 
reason. Despite this, the report also showed that more than half of 
shared e-scooter return trips are made by public transportation. Another 
study found that 28 % of respondents to an e-scooter user survey would 
not have taken public transit without shared e-scooters (Powered 
Scooter Share Mid-Pilot Evaluation, 2018). Luo et al. (2021) found 
complementarity of 29 % of shared e-scooter trips in Indianapolis with 
public transport and a competing relationship for approximately 27 % of 
the trips. Yan et al. (2021) estimated that one out of ten shared e-scooter 
trips complements the metro service of Washington DC (Kalakoni et al., 
2024). This shows that e-scooter and transit integration tends to vary 
significantly across cities.

Our study fills several gaps in the literature. Modal substitution 
ought to be carefully analyzed, especially in the case of public transit, as 
what may seem like pure substitution may actually be more accurately 
described as complementarity when looking at the complete picture of a 
trip, or the complete tour made by the traveler. For example, the use of 
an e-scooter may replace a one-way trip via transit to a certain location, 
but if the trip back is made by public transit, then the two modes may be 
complementing each other. Our study focuses on this type of inter
modality between shared micromobility and public transit, wherein a 
substitution of a transit trip by an e-scooter may not be a pure substi
tution as several users report both substituting and connecting to public 
transit via the e-scooter. This type of behavior suggests the complexity 
with which the two modes may be interacting.

Our study draws on a nationwide survey to offer new insights into 
how the built environment, trip-level characteristics, and individual 
motivations influence the complementarity between e-scooters and 
public transit. While previous research has primarily focused on land use 
and temporal factors (Javadiansr et al., 2024), limited attention has 
been given to user perceptions and personal reasons for choosing e- 
scooters. By integrating trip-level data, built environment metrics, and 
survey responses, our analysis helps fill this gap and contributes to a 
more comprehensive understanding of e-scooter–transit integration. 
Moreover, most studies are based on data from one or two cities (Yan 
et al., 2023; Javadiansr et al., 2024; Lu et al., 2024; Zuniga-Garcia et al., 
2022). Our dataset spans 20 cities across the US and thus provides a 
more holistic depiction of e-scooter and transit integration.

Finally, most e-scooter studies rely on geo-spatial assumptions to 
assess whether a transit connection was made. This commonly used 
process of attributing shared e-scooter trips to specific transit routes can 
be misleading. Areas with high population density often have transit 
stops located in close proximity to each other. Assuming an e‑scooter 
trip connects to public transit solely on the basis of its proximity to a 
transit stop risks overestimating how complementary the two modes 
really are. Moreover, some shared e-scooter trips can fall within the 
catchment areas of multiple routes, which can result in double counting 
(Ziedan et al., 2021). Our study is unique in the sense that we use rider 
survey data where users reported transit connections immediately upon 
ending their e-scooter trip. The survey explicitly asks respondents if they 
connected to transit before or after using the e-scooter.

3. Data and methods

The data used in the study was collected by the shared micromobility 

company Spin from July to November 2021 in 20 US cities (Fig. 1). The 
end-of-ride survey was deployed natively in the Spin app as a pop-up 
after the user parked their e-scooter. It was active in each city for 
approximately 30 days. No identifying or demographic data was 
collected, but respondents were asked to consent to the use of their GPS 
trip location data for research. Raw GPS data was processed to ano
nymize the exact locations to avoid identifying specific housing units or 
addresses (a problem, in particular, in lower-density neighborhoods 
with a small proportion of multi-family buildings). A total of 50,306 
anonymized trip-level responses were collected. The dataset, including 
survey responses and trip data, was provided to UC Davis through a 
University research partnership sponsored by Ford Motor Company. 
Spin was acquired by Ford in November 2018 and sold to TIER Mobility 
in April 2022.

3.1. Survey Design

The end-of-ride survey instrument was jointly developed by e- 
scooter operator Spin and UC Davis. It was designed to be answered 
quickly, with only five questions, including consent. Question topics 
included 1) whether the users connected to transit either before or after 
the e-scooter trip, 2) motivating factors for using the e-scooter, 3) the 
timing of their decision to take the e-scooter, and 4) the alternative 
mode they would have used if the e-scooter were not available. Users 
were asked to report when they planned to take a trip by e-scooter, and 
responded by choosing among three options: (1) spur of the moment 
(when I saw the scooter), (2) shortly before starting the trip, and (3) planned 
earlier in the day or the days before. Other answer choices and responses 
are shown in Table 2.

3.2. Dataset Used for Analysis

The dataset provided to UC Davis contains survey responses and trip- 
level characteristics such as distance travelled, start and end locations, 
duration of the trip, and time of day, along with user survey responses. 
This dataset was enriched with built environment characteristics such as 
population, employment, and intersection density of the locations where 
the trip was made. This multi-dimensional approach enhances the depth 
and robustness of our research findings.

After data cleaning, our dataset contains 48,301 complete survey and 
trip observations. Based on the speed of the trips, we made some ob
servations that had implausible speed values, given that the fastest an e- 
scooter can go is 15 miles per hour in the US areas of service included in 
the study. We also excluded cases with distances shorter than 100 m and 
had a travel time of less than one minute. We assumed that these records 
did not represent a full trip to a separate destination, but rather a case in 
which there was a malfunctioning of the e-scooter that led to inter
rupting the trip, or the traveler interrupted their trip for other reasons 
before getting to their destination. The original sample consisted of 
50,306 trips. 170 observations (0.338 % of the sample) were found to 
report speeds greater than 16 mph, and there were 1772 cases (3.52 % of 
the sample) with distances less than 100 m. 693 observations (1.38 % of 
the sample) were found to have trip times less than one minute. These 
cases were dropped from the sample; with 620 overlaps, our remaining 
sample consisted of 48,301 observations. The total cases that dropped 
constitute 4.15 % of the original sample. Each survey response was 
associated with trip data that the user just completed, including start 
and end timestamp and GPS coordinates, breadcrumb and crow fly 
distance, and trip duration. To protect user privacy, the e-scooter pro
vider perturbed the raw GPS point coordinates prior to sharing the 
dataset for analysis. Each GPS coordinate was randomly deflected to a 
point within a 100-meter radius of the original point. This deflection 
may affect estimates of trip distances as well as other estimates. Ano
nymization methods introduce random noise in the data so that each 
location is perturbed in an unpredictable direction, producing mea
surement error. For trips shorter than 300 m, this deflection can produce 
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a substantial error of at most 66.7%. Moreover, the uncertainty 

introduced by the offset may increase the variability in estimates, 
leading to larger standard errors and less precise inference. There are 
1450 trips between 100 m and 300 m, comprising 3.00 % of the filtered 
sample. While measurement error can pose a significant challenge for 
small datasets, the substantial sample size in our study likely minimizes 
the impact of any bias resulting from the issue.

Table 1 lists the cities where the survey was deployed. Out of the 
48,301 trips analyzed, there are 23.8 % cases in which users reported 
that they had connected to transit before or after their e-scooter trip.

3.3. Modeling Approach

In this study, to investigate what may drive e-scooter users’ decisions 
to connect with transit, we use a binary logit model considering the 
decision of whether the user connected to transit as the dependent 
variable. Binary logit models have been widely used as the modelling 
approach to estimate the effects of exogenous factors on individuals’ 
binary choices (e.g., connecting to transit or not, after or before an e- 
scooter trip) (Afghari et al., 2020). These models are fundamentally 
based on the random utility theory, which postulates that individuals 
choose between alternatives based on observed and unobserved factors. 
A utility function is defined for the individual’s choice behavior, which 
consists of a deterministic component and an error term (McFadden, 
1973). For any e-scooter user, the utility of connecting to transit before 
or after the trip is given by the sum of a deterministic component of the 
utility, which can be written as a linear equation of the explanatory 
variables and a random term capturing the impacts of the unobserved 
factors.

The following variables were used in our analysis: 

Fig. 1. Geographic distribution of survey sites across 20 US cities.

Table 1 
List of cities where the end-of-ride survey was deployed, segmented by whether 
the e-scooter users connected or did not connect to transit (N = 48,301).

City Connected to transit 
N ¼ 11,510 
(23.8 % of the total sample)

Did not connect to transit 
N ¼ 36,791 
(76.2 % of the total sample)

Ann Arbor, MI 480 (4.17 %) 2,247 (6.11 %)
Atlanta, GA 441 (3.83 %) 1,554 (4.22 %)
Baltimore, MD 1,094 (9.50 %) 3,215 (8.74 %)
Charlotte, NC 392 (3.41 %) 1,239 (3.37 %)
Detroit, MI 362 (3.15 %) 946 (2.57 %)
Fort Collins, CO 342 (2.97 %) 1,288 (3.50 %)
Gainesville, FL 131 (1.14 %) 551 (1.50 %)
Grand Rapids, MI 842 (7.32 %) 3,284 (8.93 %)
Lansing, MI 706 (6.13 %) 1,632 (4.44 %)
Los Angeles, CA 574 (4.99 %) 1,016 (2.76 %)
Orlando, FL 464 (4.03 %) 2,006 (5.45 %)
Providence, RI 511 (4.44 %) 1,900 (5.16 %)
Sacramento, CA 715 (6.21 %) 2,385 (6.48 %)
Salt Lake City, UT 855 (7.43 %) 2,517 (6.84 %)
San Diego, CA 700 (6.08 %) 2,194 (5.96 %)
San Francisco, CA 1,119 (9.72 %) 3,119 (8.48 %)
Santa Monica, CA 502 (4.36 %) 1,692 (4.60 %)
Seattle, WA 530 (4.6 %) 1,767 (4.80 %)
Stillwater, OK 191 (1.66 %) 682 (1.86 %)
Tampa, FL 559 (4.86 %) 1,557 (4.23 %)
Total 11,510 (100 %) 36,791 (100 %)
Note: Percentages reported in parentheses for each city are “column percentages” (i.e. 

percentage of observations from that column that are from that service area) 
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i. Time of day variables: We define four dummy variables to capture the 
time of day when the users made their e-scooter trip. The AM peak is 
defined as all hours between 7 am and 10 am, midday captures all 
times between 10 am and 3 pm, the PM peak contains all times be
tween 3 pm and 7 pm, and night contains all times between 7 pm and 
6 am.

ii. Factors motivating the use of e-scooters for the trip: respondents were 
asked to select the factors that motivated them to choose an e-scooter 
as the mode of travel for their trip. 

Table 2 provides the verbatim text of the nine options that were 
presented to respondents in the questionnaire.

iii. When the respondent decided the take the trip: The three categories 
listed in the questionnaire included the “spur of the moment”, 
planned shortly before starting the trip, and planned earlier in the 
day or days before.

iv. Travel time: The duration of the trip from start to end is also 
available in the dataset.

The dataset supplied by the e-scooter company was augmented with 
information obtained from various urban and built environment data
sets to enable controlling for these characteristics in the analysis. We 
construct a Euclidean line between the (deflected) start and end points 
of each e-scooter trip and capture the average urban and built envi
ronment characteristics listed below. We consider 125-meter buffers 
around each e-scooter trip line. The following variables were obtained: 

v. Population density: Data on population density is obtained from 
the Smart Location Database (SLD). A weighted average of the 
total population is calculated and then divided by the area of each 
buffer to obtain population density for each buffer.

vi. Employment density: This variable is extracted from SLD and is 
calculated as a weighted average for the census block groups that 
fall within the buffer. It captures the potential attractiveness of an 
area in terms of commute trips.

vii. POI count: Data on points of interest (POIs) is sourced from Open 
Street Maps (OSM). We selected points of interest in each buffer 
that are open to the public, such as banks, stores, hairdressers, 
etc., that are likely to attract certain types of trips.

viii. Transit index: Sourced from SLD by census block group, the transit 
index ranges from 0 to 1, with higher values indicating better 
access to transit.

ix. National walk index: sourced from SLD, the National Walk Index 
ranges from 1 to 20, with higher values indicating better pedes
trian access.

The SLD is a publicly available data product and service provided by 
the US EPA Smart Growth Program. The SLD reports or derives variables 
from the US Census American Community Survey (ACS). This data 
source maintains data from the 1-year or 5-year ACS database. We have 
used the 2018 5-year estimates in this study.

4. Results and discussion

Table 2 presents the distribution of user responses to the survey 
questions, segmented by whether users connected to transit or not.

4.1. When the e-scooter trip was planned

More than half of riders reported deciding to use an e-scooter at the 
spur of the moment. Also, a larger proportion of those who connected to 
transit reported a spontaneous decision (62.9 %) than their counterparts 
who did not connect to transit (53.4 %). Those who connected to transit 
were less likely to report planning to use an e-scooter shortly before 
starting their trip (22.1 %), compared to users who did connect to transit 
(30.8 %). The share of riders who reported planning their e-scooter use a 

Table 2 
Survey responses based on whether e-scooter users connected to transit or not 
(N = 48,301).

Connected to 
transit 
(N = 11,510 (23.8 
%))

Did not connect to 
transit (N = 36,791 
(76.2 %))

When did you decide to take the e-scooter for this trip?

Spur of the moment 7,236 (62.9 
%)

19,644 (53.4 
%)

Planned shortly before starting the 
trip

2,541 (22.1 
%)

11,333 (30.8 
%)

Planned earlier in the day or days 
before

1,733 (15.0 
%)

5,814 (15.8 
%)

Total 11,510 (100 %) 36,791 (100 %)
What factors influenced you to choose an e-scooter for this trip? *
Fastest option 5,654 (49.1 

%)
22,815 (62.0 

%)
Easiest, most convenient option 2,552 (22.2 

%)
13,847 (37.6 

%)
It’s fun 2,114 (18.4 

%)
9,854 (26.8 

%)
I do not own a car 2,096 (18.2 

%)
4,665 (12.7 

%)
Public transit is too far/too slow 1,668 (14.5 

%)
3,774 (10.3 

%)
Least expensive option 1,219 (10.6 

%)
4,650 (12.6 

%)
Best option due to COVID-19 1,062 (9.2 %) 1,639 (4.5 %)
Less polluting/more environmentally 

friendly
1,038 (9.0 %) 3,789 (10.3 

%)
Safer than alternative options 757 (6.6 %) 1,779 (4.8 %)
If not by e-scooter, how would you have taken the trip that just ended?
Less than 1 mile 5,751 (50.0 

%)
19,069 (51.8 

%)
Private car 1,022 (17.8 

%)
1,970 (10.3 

%)
Rideshare 474 (8.2 %) 1,274 (6.7 %)
Walk 2,686 (46.7 

%)
13,969 (73.3 

%)
Transit 689 (12.0 

%)
466 (2.4 %)

Personal bike 315 (5.5 %) 388 (2.0 %)
Bikeshare 31 (0.5 %) 32 (0.2 %)
Other 290 (5.1 %) 462 (2.4 %)
Nothing (skip trip) 244 (4.2 %) 508 (2.7 %)
Between 1–––2.5 miles 3,883 (33.7 

%)
12,594 (34.2 

%)
Private car 754 (19.4 

%)
2,087 (16.6 

%)
Rideshare 459 (11.8 

%)
1,891 (15.0 

%)
Walk 1,407 (36.3 

%)
6,393 (50.8 

%)
Transit 622 (16.0 

%)
809 (6.4 %)

Personal bike 203 (5.2 %) 381 (3.0 %)
Bikeshare 22 (0.6 %) 15 (0.1 %)
Other 214 (5.5 %) 433 (3.5 %)
Nothing (skip trip) 202 (5.2 %) 585 (4.6 %)
More than 2.5 miles 1,876 (16.3 

%)
5,128 (13.9 

%)
Private car 420 (22.4 

%)
1,083 (21.1 

%)
Rideshare 178 (9.5 %) 644 (12.6 

%)
Walk 656 (35.0 

%)
2,143 (41.8 

%)
Transit 274 (14.6 

%)
288 (5.6 %)

Personal bike 105 (5.6 %) 170 (3.3 %)
Bikeshare 1 (0.1 %) 2 (0.0 %)
Other 110 (5.9 %) 228 (4.5 %)
Nothing (skip trip) 132 (7.0 %) 570 (11.1 

%)

Note: * The question allowed multiple choice options with a ‘select all that apply’ 
format. Therefore, percentages may not add up to 100.
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day or more in advance was similar for those who connected to transit 
(15.0 %) and those who did not (15.8 %). These results suggest that a 
substantial portion of those users who connected to transit likely made 
last-minute decisions to use e-scooters, possibly after spotting one on the 
street or upon exiting a public transit station or stop.

4.2. Motivations for using an e-scooter

Respondents were asked about which factors motivated them to 
choose an e-scooter for their trip. The top three influencing factors were 
the same for both groups of respondents: riding shared e-scooters is the 
fastest option, the easiest and most convenient option, and it’s fun. We find 
that those who connected to transit were more likely to report that other 
factors were also important, such as car availability (and lack thereof), 
concerns to COVID-19 (as the data were collected in 2021, this was still 
an important factor affecting travel choices), and public transit being far 
away or slow. For example, about 18.2 % of users who connected to 
transit and 12.7 % of users who did not connect to transit said that one of 
the influencing factors was that they do not own a car. This highlights 
how shared e-scooters can offer mobility options to those who do not 

own a car and potentially create a space to make more users comfortable 
not owning a car.

4.3. Modes displaced by e-scooter use

Table 2 also summarizes the responses to the mode displacement 
question, segmented by connection to transit and by the e-scooter trip 
distance into three distance categories: less than 1 mile, between 
1–––2.5 miles, and more than 2.5 miles.

About half of the trips in the sample are less than 1 mile in length, 
both among riders who connected with transit (50.0 %) and those who 
did not (51.8 %). Roughly one-third were between 1 and 2.5 miles, 
among riders who connected with transit (33.7 %) and those who did 
not (34.2 %). A slightly larger share of trips was longer than 2.5 miles 
among riders who connected with transit (16.3 %) than those who did 
not (13.9 %).

As shown in Fig. 2, and not surprisingly, displacement of automobile 
trips, including private car and rideshare, is more common as trips get 
longer. This is consistent with the literature and confirms concerns about 
VMT calculations for trip displacements in previous studies that do not 

Fig. 2. Self-reported modal substitution segmented by whether the e-scooter users connected to transit or did not connect to transit and by trip distance (N 
= 48,301).
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account for mode displacement by distance. For example, Meroux, 
Broaddus and Chan (2022) found that the share of car mode displaced is 
underrepresented when using the share of trips metric and not ac
counting for distance, while walk mode is consistently overrepresented. 
For the longest trips, those over 2.5 miles, we see that roughly the same 
proportion of e-scooter trips replace automobile trips (private car and 
rideshare) among riders who connected with transit (33 %) as those who 
did not (34 %). Interestingly, a higher proportion of trips displaced 
ridesharing for e-scooter trips that are between 1 and 2.5 miles as 
compared to those that are longer than 2.5 miles.

Walking is the most frequent mode that is displaced by the use of e- 
scooters, with the largest proportion of e-scooter trips replacing walking 
for trips under 1 mile. Fewer walk trips were displaced among riders 
connecting to transit than those who did not. While 46.7 % of riders who 
connected to transit reported they substituted an e-scooter for walking, 
73.3 % of riders who did not connect to transit would otherwise have 
walked. This relates to the fact that e-scooters most often replace 
walking for short-distance trips. Interestingly, 12.0 % of riders who 
connected to transit reported that they took a transit trip, compared to 
2.4 % of riders who did not. In this case, we speculate that some users are 
using an e-scooter rather than a connecting transit service to reach a 
larger hub, for example, to avoid waiting for the transit vehicle on a 
secondary route with lower quality of service.

Mode displacement patterns were similar for trips between 1 and 2.5 
miles in length and those longer than 2.5 miles, but with larger pro
portions of motorized modes displaced for longer trips, as discussed 
above. The mode displacement for transit offers some interesting in
sights: 12.0 % to 16.0 % (depending on distance) of those connecting to 
transit said they would have used transit if the e-scooter were not 
available. This may be interpreted in several ways – perhaps these re
spondents would have used other forms of public transit (e.g., taken a 
bus to access rail); or perhaps the user interpreted the question to report 
that they would have taken their entire trip by transit, instead of using 
the e-scooter to connect to transit. This seems to imply that e-scooters 
may be shortening first/last mile connection times by offering a more 
convenient alternative option for transit users who would otherwise 
walk to/from transit stops. For such e-scooter users, we may infer that 
the entire trip may have been quicker with the e-scooter than without.

4.4. Segmentation of e-scooter riders

Table 3 provides a further exploration of the modal integration be
tween shared e-scooters and public transportation. The sample is split 
into four groups based on exogenous segmentation using the two vari
ables connection to transit and transit displaced. These are both binary 
variables. The former is defined using the survey question ‘did you 
connect with public transit before or after your Spin trip?’. Respondents who 
answered ‘yes’ to this question were assigned a value of 1 for the 
connection to transit variable, 0 otherwise. The transit displaced variable is 
defined based on the survey question ‘if not by e-scooter, how would you 
have taken the trip that just ended?’. Respondents who answered ‘transit’ 
to this question were assigned a value of 1 for the transit displaced var
iable, 0 otherwise. Based on this segmentation, the sample can be 
categorized into the following four groups: 

i. No interaction: E-scooter users who did not displace transit and 
did not connect to transit (quadrant A of Table 3). These users 
may be interpreted as having no interaction with public transit at 
all during their e-scooter trip. This group makes up the vast ma
jority (72.9 %) of the trips in the sample.

ii. Complements: E-scooter users who stated that they did not 
displace transit for the e-scooter and did connect to transit 
(quadrant B). Such trips may be interpreted as cases where e- 
scooters clearly complement transit use. Perhaps they would have 
walked to transit instead, and e-scooters may have provided a 
faster alternative to walking. This category constitutes the second 
largest subgroup in the sample (20.5 % of the sample).

iii. Substitutes: E− scooter users who said they displaced transit and 
did not connect to transit, shown in quadrant C. This category of 
trips may be interpreted as clearly having substituted public 
transportation with the traveler who used the shared e-scooter 
instead of transit to make their trip (3.2 % of the sample).

iv. Mixed effects: E-scooter users who said they displaced transit and 
also connected to transit (quadrant D). Such users may be inter
preted as having used shared e-scooters to access public transit as 
part of a multimodal (or better say, intermodal) trip. For such 
trips, we may interpret that e-scooters provided access and hence 
made life easier for users. It may also imply that for part of the 
trip, transit was displaced, but not for the entire trip, since the 
respondents claim they did connect to public transportation at 
some point. For example, someone might have intended to walk 
or use a bus to access a train station, but then decided to use a 
shared e-scooter instead when they saw one in the street. We also 
speculate that some respondents may have answered ‘yes’ to the 
survey question if they had used transit at some point during the 
same day prior to their e-scooter trip, but perhaps not as a leg of 
the same trip, so this ambiguity needs to be considered among the 
potential limitations affecting the study. Such respondents 
constitute 3.3 % of the trips in the sample.

In total, approximately 6.5 % of the respondents (i.e., those in 
quadrants C and D) said that they would have used public transportation 
instead of the shared e-scooter for their trip. As the information in 
Table 3 shows, considering this information alone, at face value, may be 
misleading. Half of these respondents said that while they would have 
used transit if the e-scooter had not been available, they still chose to 
connect to transit during their trip. This suggests that the extent of 
transit displacement cannot be accurately assessed solely based on re
spondents’ stated alternative mode choices in the absence of e-scooters, 
as done in prior studies. Such approaches may overestimate the degree 
to which e-scooters substitute for transit. In reality, some individuals 
who report choosing transit as their alternative may still be using transit 
for part of the trip, with the e-scooter replacing only a segment rather 
than the entire journey. Our findings about complementarity (about one 
in every five e-scooter trips) align to some extent with Luo et al. (2021), 

Table 3 
Cross-tabulation between transit displacement and connection to transit (N =
48,301).

Connection to 
Transit
No Yes Total

Transit 
Displaced 

No Count 35,228 
(A)

9,925 
(B)

45,153

​ % within Transit 
displaced

78.0 % 22.0 % 100.0 
%

​ % within Connection 
to transit

95.8 % 86.2 % 93.5 %

​ % of Total 72.9 % 20.5 % 93.5 %
Yes Count 1,563 (C) 1,585 

(D)
3,148

​ % within Transit 
displaced

49.7 % 50.3 % 100.0 
%

​ % within Connection 
to transit

4.2 % 13.8 % 6.5 %

​ % of Total 3.2 % 3.3 % 6.5 %
Total ​ Count 36,791 11,510 48,301
​ ​ % within Transit 

displaced
76.2 % 23.8 % 100.0 

%
​ ​ % within Connection 

to transit
100.0 % 100.0 % 100.0 

%
​ ​ % of Total 76.2 % 23.8 % 100.0 

%
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who found that 29 % of shared e-scooter trips in Indianapolis comple
ment public transport. However, they also find a potentially competing 
relationship for 27 % of trips, which is much higher than our results 
show. We find that most e-scooter trips (72.9 %) had no interaction with 
transit. However, it is possible that this proportion is inflated due to the 
fact that our survey was conducted during the pandemic.

4.5. Relationship between transit connection and trip distance

Fig. 3 shows the distribution of trip distances in the sample. The 
distribution is positively skewed with a mean value of 1.440, a median 
value of 0.974 and a standard deviation of 1.449. Our sample’s average 
trip length aligns with findings from previous research, which shows 
that e-scooter trips were generally quite short. Most studies found trip 
lengths averaging between 1 and 1.5 miles (NABSA, 2020; NACTO, 
2023). According to the latest NABSA report, the average shared e- 
scooter trip is 1.2 miles long, slightly shorter than the average shared e- 
bike trip (2.0 miles) and the average shared pedal bike trip (1.4 miles). 
In our sample, most trips (51.39 %) fall at relatively short distances of 
one mile or less. The distribution has a long right tail implying that 
although the bulk of trips are short, there are some notably longer trips 
that extend the tail farther to the right. Overall, the data is clustered over 
short distances with a smaller proportion of much longer trips pulling 
the mean upward.

Table 4 shows the average distance of e-scooter trips made by each 
rider segment identified above, along with results of a t-test of statistical 
significance against the overall sample average. E-scooter users who 
substituted a transit trip with a shared e-scooter on average travelled a 
statistically significant longer distance by e-scooter than the rest of the 
sample. The average distance of the e-scooter trips that replaced the 
transit trips was 1.77 miles, significantly higher than the full sample 
average. This is expected as this trip consists of the first/last distance the 
respondents would cover to access transit as well as the distance in
dividuals would travel by transit. We speculate that riders substituting e- 
scooters for longer trips that they would otherwise make by transit may 
do so for the motivating factors reported above, i.e., that the e-scooters 
provide a faster alternative to transit and are more affordable than 
rideshare, a convenient solution especially for those who do not have a 
car available. An interesting avenue worth exploring in future research 
is whether e-scooters expand the transit shed by offering a fast and 
convenient first- and last-mile connection.

The average length of the e-scooter trips clearly complementing 
transit was 1.51 miles. These ‘regular distance’ trips connecting to 
transit imply that e-scooters were used as a first/last mile connection to 
transit. Notably, this distance (~1.5 miles) is longer than distances 
typically used to estimate the ‘walking shed’ for transit, which is usually 
considered to be in the order of 0.25 to 0.5 miles. This implies that e- 

scooter users are able to access fixed route public transit from further 
flung locations, possibly expanding the transit access shed.

4.6. Binary logit model estimation results

Table 5 shows the results of the estimation of the binary logit model. 
The dependent variable is connection to transit which is based on the 
rider’s response to the question ‘did you connect with public transit before 
or after your Spin trip?’. The column at the far right contains values for 
the exponential value of the coefficients, which helps form in
terpretations in terms of relative probabilities.

The explanatory variables are categorized into three broad groups: 
trip level attributes, reasons for using the e-scooter, and neighborhood 
characteristics. All coefficients are interpreted as the impact of that 
variable on the probability of an e-scooter trip being used for connecting 
to transit, given that the respondent decided to take an e-scooter for that 
trip. Travel time is found to be significant and positive, implying that 
trips of longer duration have a higher probability of connecting to 
transit. The trip planning variable is categorical and is based on the 
question ‘when did you decide to take the e-scooter for this trip?’. This 
variable is assigned a value of 1 if the rider answered, ‘spur of the 
moment’, a value of 2 if the rider responded with ‘planned shortly before 
starting the trip’ and a value of 3 if the response was ‘planned earlier in 
the day or days before’. Considering the first category as the base, the 
results show that compared to e-scooter trips that were taken on the spur 
of the moment, trips that were planned beforehand have a lower prob
ability of connecting to transit, all else equal. This suggests that users 
who connect to transit do so spontaneously, e.g. when they see a scooter 
available near the transit stop. It may also imply that the dockless nature 
of these services does not allow people to plan much in advance. In terms 
of the time of day when the trip was made, users who started the e- 
scooter trip during the PM peak and night are more likely to connect 
with transit as compared to those who took the trip in AM peak or 
midday. This may imply that e-scooter users traveling during PM peak or 
at night may be using the e-scooter as a faster way to reach the transit 
station which may invoke a sense of safety.

The coefficients of the variables in the reasons for using an e-scooter 
category imply that those who said they used an e-scooter for their trip 
because it is fast, easy or convenient, and fun had a lower probability of 
connecting to transit on their e-scooter trip, all else equal. The co
efficients for some motivation factors were positive and significant, 
including for e-scooter riders who do not own a car, say that transit is too 
far or slow, e-scooters are the best option due to COVID-19, and it is a 
safe option − meaning that these respondents made trips that were more 
likely to connect to transit, all else equal. All the variables in the reasons 
for using an e-scooter category are found to be highly significant. Re
spondents in the sample who find that transit is too far or too slow have a 

Fig. 3. Distribution of trip distances in miles (N = 48,301).

M. Ahmad et al.                                                                                                                                                                                                                                 Travel Behaviour and Society 41 (2025) 101090 

8 



higher probability of connecting to transit – this may imply that areas 
where the transit network is weak and shared micromobility is available 
may see a higher number of transit and e-scooter connections. The policy 
implication here is that a weak transit network may be better utilized if 
that area has shared micromobility options. Not owning a car also 
positively affects the probability that an e-scooter rider would connect to 
transit. This implies that respondents with limited mobility options use 
e-scooters and transit as complimentary modes. The policy takeaway 
from this finding is that local governments can support people with 
limited mobility options by integrating e-scooters and transit networks.

Some of the neighborhood characteristics have a significant impact on 
the decision to connect to transit. Population density in the surroundings 
of where the e-scooter trip was made has a negative impact on the 
probability of the e-scooter trip connecting to transit. This may be 
explained by the expectation that low density areas are usually served by 
transit stops that are far away from each other, so in these areas there is a 
higher likelihood that e-scooter trips can help access/egress transit stops 
thus connecting to transit. Empirical studies yield mixed outcomes on 
how population density affects the integration of e-scooters with public 
transit. For example, our findings align with Yan et al. (2021) who note 
that complementarity was mostly noted outside downtown Washington 
DC, whereas the two modes compete in the downtown area. However, 
other studies discovered a significant relationship between e-scooter and 
transit trips in downtown areas (Zuniga-Garcia at al., 2022). The coef
ficient for employment density is positive and significant. This seems to 
imply that areas with high employability experience more e-scooter and 
transit connections. The data set used for this study does not contain 
more information on this phenomenon, but future studies can use this as 
a reference to explore if some individuals are using e-scooters to connect 
to transit for commute trips. Guo and He (2020) find that residential and 
industrial areas, in particular, exhibit a higher level of integrated use, 
driven largely by commute trips (Javadiansr et al., 2024). While the 
impact of this variable may need further exploration to be understood 
fully, especially when combining this finding with that of population 
density, it may be the case that since e-scooters have become the norm in 
many cities, people may be comfortable adopting them also to commute 
from lower-density areas with lower walk accessibility to transit to jobs 
located in the downtown that are along major transit corridors. We also 
include in our analysis an interaction term between travel time and 
population density. A statistically significant interaction term is conse
quential because of a nonlinear multiplicative effect. This interaction 
term has a positive coefficient implying that higher population density 
amplifies the effect of trip time on e-scooter trips connecting to transit. 
This could suggest that places with higher population density have a 
stronger impact of longer e-scooter trips connecting to transit. The 
policy implication of this finding is that local governments can subsidize 
longer trips over shorter ones, especially in dense cities. It may also 
imply that having e-scooter stations further spread out from the city 
center may encourage transit use. The inclusion of an interaction term 
can potentially lead to multicollinearity. We therefore use the variance- 
inflation factor (VIF) test to rule out multicollinearity. The results of the 
test are reported in Table A1 of the Appendix. The generalized VIF, or 
GVIF, goes beyond the traditional VIF as it applies to multiple degrees of 
freedom. Table A1 in the Appendix reports the GVIF along with the 
value of GVIF^1/(2*df), which provides a per degree-of-freedom 

Table 4 
Summary statistics of selected categories (N = 48,301).

Transit displaced Connection to transit Interpretation Observations Average distance (miles) t-test p-value

No No No interaction 35,228 (72.93 %) 1.40 − 5.48*** <0.001
No Yes Complements 9,925 (20.55 %) 1.51 4.28*** <0.001
Yes No Substitutes 1,563 (3.24 %) 1.77 9.34*** <0.001
Yes Yes Mixed effects 1,585 (3.28 %) 1.59 4.01*** <0.001
Full sample 48,301 1.44 ​ ​

Notes: (.) significant at 10% level, * significant at 5% level, ** significant at 1% level, *** significant at 0.1% level. Observation proportions of totals provided.

Table 5 
Model estimation results of binary logit model for the e-scooter connection to 
transit (N = 48,301).

Estimate 
βK

Standard 
error

t-ratio p-value eβK

Alternative 
Specific 
Constant 
(ASC)

− 0.269 0.117 − 2.290 0.022* 0.764

Trip attributes
Travel time 

(minutes)
0.002 0.001 1.991 0.047* 1.002

Trip planning 
(L2)

− 0.373 0.027 − 13.624 < 0.001*** 0.689

Trip planning 
(L3)

− 0.157 0.032 − 4.831 < 0.001*** 0.855

PM peak 0.087 0.029 2.965 0.003** 1.091
Night 0.224 0.028 8.093 < 0.001*** 1.251
Reasons for using the e-scooter
Fastest option − 0.465 0.023 − 19.892 < 0.001*** 0.628
Easiest, most 

convenient 
option

− 0.668 0.028 –23.644 < 0.001*** 0.513

Least 
expensive 
option

− 0.055 0.040 − 1.378 0.168 0.946

Don’t own a 
car

0.465 0.032 14.353 < 0.001*** 1.592

Public transit 
is too far/ 
too slow

0.608 0.037 16.343 < 0.001*** 1.837

Best option 
due to 
COVID-19

0.681 0.046 14.701 < 0.001*** 1.976

It’s fun − 0.703 0.025 − 28.465 < 0.001*** 0.495
Safer than 

alternatives
0.205 0.050 4.076 < 0.001*** 1.228

Less polluting − 0.056 0.043 − 1.305 0.192 0.946
Neighborhood characteristics
Population 

Density
− 16.526 4.265 − 3.875 < 0.001*** < 0.001

Employment 
density

1.736 0.660 2.632 0.008** 5.675

National walk 
index

− 0.009 0.006 − 1.619 0.105 0.991

Travel time 
(minutes) x 
Population 
density

0.372 0.140 2.647 0.008** 1.450

LL(0) –33,479.7
LL(C) − 26,522.53
LL(final) − 24,628.06
ρ2

EL− BASE 0.2644
Adjusted ρ2

EL− BASE 0.2632
ρ2

MS− BASE 0.0714
Adjusted ρ2

MS− BASE 0.0700
AIC 49,332

Notes: (.) significant at 10% level, * significant at 5% level, ** significant at 1% 
level, *** significant at 0.1% level. 20 regional controls were included in this 
model, with San Francisco used as reference. All regional control coefficients are 
negative and significant (p-values between 0.1% and 5%) except for Detroit and 
Los Angeles, whose coefficients are not statistically significant.
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inflation that allows for a fair comparison across variables with varying 
df (Fox and Monette, 1992). Considering a threshold of 2 for the GVIF^1/ 
(2*df) value, we find that including the interaction term does not inflate 
the standard errors to an extent that merits remedial action.

The POI count and transit score do not have a significant impact on 
the dependent variable. We retain the national walk index variable in 
the model as it increases the overall goodness of fit of the model, which 
may be due to correlations amongst the variables as well as some 
contribution of this variable to explaining choices, even if the coefficient 
is not found to be statistically significant at the 5 % level due to larger 
noise in the data (which leads to larger standard errors). However, the 
POI count and transit index did not enhance the model fit and were 
therefore excluded from the analysis to maintain parsimony. For 
regional controls, we set San Francisco as the reference. All city dummy 
coefficients are significantly lower than the base, except for Detroit, 
Lansing and Los Angeles. The former two cities have insignificant co
efficients, and Los Angeles has a positive and significant coefficient. This 
implies that the average impacts of unobserved factors in most cities 
point to e-scooter users being less likely to connect to transit than those 
in San Francisco, Detroit, Lansing and Los Angeles.

5. Conclusions

This study explores the interactions between the use of shared e- 
scooters and public transit by investigating the factors that drive shared 
e-scooter users’ decisions about whether or not to connect to transit 
services before or after their e-scooter trip. Using a novel dataset with 
linked trip and survey data, we explore the factors that influence riders’ 
use of e-scooters as a substitute for and complement to public transit 
with a large sample of almost 50,000 e-scooter trips from 20 US cities.

Among other major findings of the study, our analysis reveals that 
what may first appear to be a substitution of transit trips with shared e- 
scooters may not always be true. Approximately 6.5 % of the re
spondents in the sample said that they would have used public trans
portation for their trip instead of the e-scooter. However, about half of 
the respondents who said they would have used transit if the e-scooter 
were not available also reported that they did actually connect to transit 
either before or after that e-scooter trip. In other terms, what may 
initially appear as pure substitution with transit can be better described 
as a mix of substitution and complementarity between the two modes. 
Previous studies that solely relied on the self-reported mode choice in 
case the e-scooter was not available likely overestimated the mode 
substitution of e-scooters with transit. Thanks to the availability of 
detailed information of the e-scooter trip distances (and locations where 
the trips are made), we find that the average length of the e-scooter trips 
complementing transit was 1.48 miles, implying that e-scooters are used 
as a first/last mile connection to transit over distances that would be 
unpleasant to walk.

In the study, we further investigate the factors that explain why e- 
scooter users connect to transit by estimating a binary logit model of the 
decision of e-scooter users to connect (or not) to transit for their trip. The 
results show that individuals’ motivation factors to use an e-scooter play 
a significant role in explaining whether or not they are connected to 
transit. Those motivated by not owning a car, considering transit too far 
or slow, and considering e-scooters a safe option were more likely to 
connect to transit, all else equal. Individuals who made a spontaneous 
decision to take the e-scooter for their trip are more likely to connect to 
transit compared to those who plan more in advance to use an e-scooter. 
Moreover, trips made in the night and PM peak hours are more likely to 
connect to transit than trips made during the midday and AM peak. 
Travel duration is also found to positively impact the probability that an 
e-scooter trip connects to transit.

The findings from this study have multiple policy implications for 
two stakeholders: micromobility providers and transit agencies. The 
finding that spontaneous e-scooter users are more likely to connect to 
public transit than those who plan their e-scooter trips has important 

implications for transportation planning. It suggests that e-scooters 
function as a flexible, on-demand solution for first- and last-mile con
nectivity rather than as a standalone mode for planned trips. Transit 
agencies and micromobility providers can capitalize on this user 
behavior by improving the visibility and availability of e-scooters near 
transit hubs, enhancing real-time information systems, and removing 
barriers to spontaneous access (e.g., through seamless app integration). 
Micromobility providers should consider rebalancing vehicle fleets to 
ensure higher availability of e-scooters near transit hubs during PM peak 
and nighttime hours. These initiatives could ultimately increase multi
modal travel and public transit use. Some public transit agencies are 
already collaborating with micromobility providers, including micro
mobility as an important component in their plan for first and last mile 
connection to public transit (Mohiuddin, 2021).

While this study provides several pieces of novel information that 
contribute to expanding the knowledge in the literature about the 
adoption of e-scooters and their relationship with public transit use, it is 
also constrained by certain limitations that are worth mentioning. First, 
the dataset for the study does not include exact GPS locations of the trips 
nor the route taken by the e-scooter users. This limitation, though, is 
expected to have a relatively limited impact on the analyses presented in 
this study. The data also does not provide information about which trips 
are being made by the same individual, so frequent users might be 
represented with multiple trips in the same dataset. Second, the research 
team does not have access to the users’ socio-demographic data. This 
may cause potential biases and over-evaluation of the impacts of urban 
and built environment variables used in the model, due to a form of 
omitted variable bias, as these variables might pick up some of the im
pacts of the socio-demographic variables. Third, there are certain limi
tations due to how the survey question that is used as a dependent 
variable in the model was asked in the survey (“Did you connect with 
public transit before or after your Spin trip?”). We do not know whether 
users connected with transit immediately before or after their e-scooter 
trip, or whether the transit connections were part of a longer multi- 
modal/inter-modal trip. Further, some users might have interpreted 
this question as simply reporting whether they used public transit at 
some other point before/after the e-scooter trip during the same day. 
This limitation might cause an overestimation of the number of trips that 
are connected to transit. Fourth, the 100-meter offset to anonymize the 
data may be considered rather large in an urban setting. Anonymization 
methods introduce random noise in the data so that each location is 
perturbed in an unpredictable direction, producing measurement error. 
For trips shorter than 300 m, this deflection can produce a substantial 
error of at least 33.3 %. However, trips less than 300 m only comprise 
3.00 % of the total sample. Therefore, we expect this bias should not be 
substantial given the large size of our dataset. Fifth, the sample used for 
this study was collected during the pandemic, a time during which 
commute and travel patterns had completely shifted from the norm. 
Even though there was no strict lockdown in US cities, many people 
were avoiding crowds and being outdoors. Our results show that most e- 
scooter trips (72.9 %) had no interaction with public transit. We suspect 
that this value was higher than it would be in the absence of the 
pandemic. Finally, we could only use data from users who consented to 
take the survey and authorized the use of their data for research pur
poses, which might lead to self-selection issues (including eventual 
respondent biases) and limit the representativeness of the sample.

Future directions for research on the interactions between e-scooters 
and transit may involve a deeper exploration of the categories identified 
in the descriptive analysis, that is, whether there was no interaction 
between transit and e-scooters, whether they were found to be com
plements, substitutes or some combination of both, in particular to 
address the limitations of the present study and increase the accuracy 
and reliability of the results. We also plan to investigate whether e- 
scooters play a significant role in expanding the catchment areas of 
transit stations. Future extensions in this field may yield important post- 
pandemic insights since using the e-scooter due to COVID-19 was a 
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temporary issue. Other important dimensions that we plan to explore 
include investigating how sociodemographic characteristics and attitu
dinal variables may impact travel behavior and the integration between 
e-scooters and public transit. Future extensions of our work may involve 
trying to match trip data with rider data, including sociodemographic 
and attitudinal data. This may allow us to use more sophisticated 
modeling approaches such as integrated choice and latent variable 
models.
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Appendix

Table A1 shows the results of the VIF test for multicollinearity.

Table A1 
Results of VIF test.

GVIF Df GVIF^(1/(2*Df))

Travel time (minutes) 2.098 1 1.449
Fastest option 1.100 1 1.049
Easiest, most convenient option 1.216 1 1.103
Least expensive option 1.224 1 1.106
Don’t own a car 1.134 1 1.065
Public transit is too far/too slow 1.229 1 1.109
Best option due to COVID-19 1.150 1 1.072
It’s fun 1.112 1 1.054
Safer than alternatives 1.140 1 1.068
Less polluting 1.215 1 1.102
Trip planning 1.071 2 1.017
Population density 2.558 1 1.599
Employment density 1.317 1 1.148
PM peak 1.418 1 1.191
Night 1.509 1 1.228
National walk index 3.053 1 1.747
Travel time (minutes) x Population density 2.720 1 1.649
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