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Abstract Landslides significantly threaten human life, infrastructure, and environ-
mental balance. In the hilly regions of Bangladesh, including Sylhet and Rangamati, 
landslides are frequent, causing 727 deaths and 1017 injuries between 2000 and 2018. 
The northeastern section of Bangladesh is projected to receive over 500–600 mm of 
precipitation in 2023, breaking records over the past 122 years, according to the 
European Centre for Medium-Range Weather Forecasts (ECMWF). With an eleva-
tion range of 0 to 195 m above sea level and 18% of its total land area covered by 
water bodies, Rangamati is particularly vulnerable to landslides. Despite the devas-
tating impact of landslides, susceptibility assessment and risk management strategies 
are lacking. This research aims to address this gap by developing a comprehensive 
framework for sustainable landslide risk mitigation using geostatistical and geospa-
tial modeling techniques. Factors such as land use and land cover (LULC), elevation, 
slope, topographic wetness index (TWI), precipitation, lithology, soil type, normal-
ized difference vegetation index (NDVI), and distance from roads are used to create a 
frequency ratio (FR) model and identify landslide susceptibility and risk zones. The 
resulting high-resolution landslide susceptibility map (LSM) and risk assessment 
models provide valuable insights for policymakers, land-use planners, and stake-
holders involved in disaster risk reduction and sustainable development. By applying 
geostatistical and geospatial modeling techniques to assess landslide susceptibility, 
manage risk, and promote sustainability, this research enhances resilience to land-
slides and highlights the importance of proactive planning and informed decision-
making in mitigating the impact of landslides for promoting sustainable development 
in hilly regions.
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23.1 Introduction 

A landslide is a geological phenomenon encompassing various ground movements, 
such as rock falls, deep slope failures, and shallow debris flows (Rahman 2012). 
Unplanned development activities, overpopulation, settlement along hill slopes, and 
ineffective disaster risk reduction efforts are the anthropogenic contributors accom-
panying climate-change-induced increased torrential rainfall are the main reasons 
for the increase in landslide occurrence (Alam 2020). Over the past five decades, 
the United Nations (UN) has prioritized implementing disaster risk reduction initia-
tives. The United Nations officially designated 1990 to 1999 as the “International 
Decade for Natural Disaster Reduction” (Alexander 1993). Additionally, the United 
Nations’ Sustainable Development Goals for 2015–2030 have established a precise 
aim to substantially reduce the number of fatalities and the overall impact on individ-
uals affected by disasters worldwide (UN 2015). From 2004 to 2013, 115 of the 173 
global landslides resulted in around 7098 fatalities and impacted 3 million people in 
Asia alone (Ahmed et al. 2014; IFRC  2014). Bangladesh has been a prime suscep-
tible zone for landslides for the last decades. Most of Bangladesh’s land is floodplain, 
while only 18% is hilly and mountainous (Islam and Uddin 2002). In Bangladesh, 
17 persons perished in 1999, 13 perished in 2000, 91 perished in 2007, 54 perished 
in 2010, and 17 perished in 2011 (BWDB 2005). Over the last three decades, there 
have been around 200 fatalities and considerable economic and property damages. 
The unconsolidated sedimentary rocks in the hill tracts by the rivers and streams are 
the reasons for high landslide-susceptible areas (Rashid 1991; Brammer 1996). 

In recent years, this landslide has been a significant concern in the Chittagong 
and Chittagong Hill Tracts regions of Bangladesh’s southeast. Chittagong has experi-
enced approximately 12 landslides over the past five decades (BWDB 2005). Kutu-
palong Rohingya Camp (KRC) in Cox’s Bazar District (CBD), Bangladesh, saw 
roughly 257 landslides or slope collapses, resulting in five fatalities and the destruc-
tion of over 5000 shelters (Kamal et al. 2022). Sylhet is also a vulnerable location 
for landslides because of its topographic condition where about 10,000 households 
live in hazardous conditions due to deforestation and hillocks being chopped down. 
These families are not on a government list, and there are no overt efforts to help 
them get back on their feet. The number of individuals living in danger is unknown 
to the district administration (Debu 2022). 

The most vulnerable locations to landslides in Sylhet are built-up areas and 
vegetation to built-up land use and land cover (LULC) change types, and primary 
economic activities like jhum cultivation and fishing are the worst affected by land-
slides, according to the characteristics, causes, and consequences of landslides in 
Rangamati District where the urbanized Bengali and Rohingya refugee communi-
ties are highly vulnerable to landslide (Abedin et al. 2020; Ahmed 2021). That’s
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why an assessment of landslide vulnerability in hilly areas in Bangladesh is needed 
to understand the risk, improve preparedness, and reduce the impact of landslides 
(Edris and Alam 2020). Sylhet and Rangamati are essential from an environmental 
and economic standpoint. The selection of these areas is based on differences in the 
landslide situation and variables impacting natural hazards supporting the new range 
of research in geography. 

The occurrence of any natural catastrophe may be traced mostly to the interaction 
of political and economic variables, insufficient adaptation to natural circumstances, 
and human activity. To have a comprehensive understanding of the constituents of a 
disaster, it is imperative to thoroughly examine both exceptional natural occurrences 
and societal development over time (Quarantelli 1998; Alexander 2000). So, the 
chapter aims to address this gap by developing a comprehensive framework for 
sustainable landslide risk mitigation using geostatistical and geospatial modeling 
techniques to assess landslide susceptibility, manage risk, and promote sustainability, 
this research enhances resilience to landslides on Sylhet and Rangamati. 

The assessment methodology indeed includes numerous factors. In Bangladesh, 
slope angle aspect, LULC, elevation, geology, normalized difference vegetation 
index (NDVI), distance from the road, rainfall, and distance from stream have been 
given the highest importance in landslide susceptibility mapping (Chowdhury 2023). 
A multidisciplinary approach was used to research landslides in Bangladesh, focusing 
on the Chittagong region (Kafy et al. 2017). Also, the frequency ratio (FR) approach 
is used to assess landslide susceptibility because it possesses a success and prediction 
rate of 75% to 80% (Pratap and Vikram 2021). The FR value is one metric to assess 
the relationship between various causes and landslides. A moderate link with land 
sliding is shown by an FR value of less than 1, while a strong correlation is indicated 
by a value of more than 1 (Samanta et al. 2018). A more accurate map of vulner-
able landslide sites is what the FR method’s landslide susceptibility map (LSM) will 
provide (Mahdi et al. 2023). The comparative analysis between two locations (Sylhet 
and Rangamati) will add an immense dimension to the research that will help the 
policymakers build a comprehensive recommendation for capacity building against 
landslides. The mitigation of landslides in southeast Bangladesh is insufficient due 
to financial constraints (Rabby and Li 2019). 

The main objective of this chapter is to analyze landslide susceptibility and risk 
assessment using geostatistical and geospatial modeling techniques to provide guide-
lines for policymakers and planners for the development of Sylhet and Rangamati. 
The chapter has provided specific guidance for each location. As the influencing 
factor for landslides in each location varies, the research will be beneficial for cost-
efficient development. The order of upazilas and other parameters will be useful 
in determining the location and other aspects that will enhance landslide mitiga-
tion and protection. The overall research will provide an inventory of landslides and 
a comparison examination of two important locations with different topographies, 
environments, and climates. The research findings will provide qualitative assistance 
to improve the development process in Sylhet and Rangamati.
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23.1.1 Study Location 

The hill tracts of Bangladesh, including the Chittagong hilly regions and Sylhet hilly 
sides, are indeed considered landslide susceptible areas. Sylhet is situated in the 
northeastern region of Bangladesh at coordinates 24°32'0'' N and 91°52'0'' E on the  
northern side of the river Surma, encompassed by the Jaintia, Khasi, and Tripura 
hills. The physiography of Sylhet mainly consists of hill soils, which include many 
significant depressions referred to as “Haors” by the local population (Bangladesh 
Metrological Department 2009). A total of 27 wards in Sylhet are estimated to have a 
population density of 250.26 per square kilometer (Habibur et al. 2011). Its immense 
rainfall increase over the years from May to September is the prime factor for land-
slides (Bangladesh Metrological Department 2009). Rangamati is situated within 
the southeastern part delimited by India to the north and east, Bandarban district to 
the south, and Khagrachari and Chittagong districts to the west. It covers an expan-
sive area of 6116.19 km2, making it the largest district in the country in terms of 
geographical expansion with 10 administrative upazilas (Rangamati Hill District 
Council 2011). The research region encompasses 1145 km2, specifically including 
landslide-vulnerable locations Rangamati Sadar, Kawkhali, and Kaptai, which indi-
vidually cover 547 km2, 339 km2, and 259 km2, respectively. This region is more 
significant and fragile in terms of biodiversity since 497 km2 of it is covered in 
forest flora, whilst 218 km2 of it is distinguished by riverine characteristics (BBS 
2012). According to Rangamati district government, about 12,450 people experi-
enced losses (UNPO 2017). Additionally, 1,500 dwellings were demolished, while 
2,000 residences sustained partial damage due to landslides (UNDP 2017) (Fig. 23.1).

23.2 Methods and Materials 

The research follows the FR method for analyzing the landslide susceptibility in 
Sylhet and Rangamati. These significant economic hubs of Bangladesh significantly 
influence the country’s development. The previous year’s landslide record and NASA 
landslide inventory data prepared the map. The workflow diagram represents the 
conditioning factors and procedures for the FR method to prepare LSM. The data 
sources required to conduct FR calculation are illustrated in (Table 23.1) for  LSM  
(Fig. 23.2).

Elevation, topographic wetness index (TWI), LULC, slope, rainfall, lithology, 
NDVI, soil type, and distance from the road are the prime conditioning factors for 
the suitable method calculation. In landslide susceptibility research, slope, curvature, 
and aspect variables are commonly regarded as critical characteristics related to 
landslide conditions. These variables are typically derived using a digital elevation 
model (DEM) with a spatial resolution of 30 m. The research region was categorized 
into five distinct groups based on the significance of elevation and slope as primary 
determinants of landslide incidence. As the elevation height and slope angle drop,
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Fig. 23.1 Study area (Sylhet & Rangamati, Bangladesh)
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Table 23.1 Data source for landslide influence factors 

Factor File type Source 

Elevation DEM (30 m × 30 m) USGS 

TWI DEM (30 m × 30 m) USGS 

LULC Sentinel-2, Landsat 8 (10 m × 
10 m) 

ESRI 

Slope DEM (30 m × 30 m) USGS 

Rainfall IDW Bangladesh metrological 
Department 

Lithology USGS 

NDVI (30 m × 30 m) USGS 

Soil Type BARC 

Distance from Road BARC

there is an increased likelihood of landslide events, resulting in a more significant 
incidence of landslides in low-lying and flat regions. Conversely, it is improbable for 
it to transpire at higher altitudes. Steep slopes accelerate the velocity of surface run-
off, reducing the duration during which the soil can absorb the water. The influence of 
curvature is a significant component in the study of landslides. It has been categorized 
into three types: concave (negative), convex (positive), and flat (zero) surfaces. The 
amount of rainfall and sunshine received by terrain is influenced by conditioning 
factors (Jebur et al. 2014). 

The conditioning factor for TWI was derived using DEM with a spatial resolution 
of 30 m, using Eq. (23.1), resulting in the following expression: 

TWI = ln
(

As 

tanβ

)
(23.1) 

The specific catchment area (m2/m) and slope angle in degrees (β) are defined as 
variables in the study conducted by Regmi et al. (2010). TWI measures the water 
accumulation at various locations within a watershed and the inclination of water to 
move downslope due to gravitational forces (Moore et al. 1991). Typically, higher 
TWI values are observed in places prone to landslides. 

Another influential element that affects landslides is rainfall data collected from 
the Meteorological Agency of Ethiopia over 30 years (1990–2021), especially from 
June to August. The rainfall map was generated using the IDW interpolation tech-
nique on the yearly average precipitation data obtained from the station sites within 
the research region. 

NDVI is a popular and frequently utilized index. The vegetation index is 
commonly used in global climate and environmental change studies. Vegetation’s 
sensitivity to the environment helps protect against natural disasters by influencing 
ecological balance and climate. Distance to Road: One factor that affects the likeli-
hood of a landslip is the distance from a road. This factor refers to a road network
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that serves as a dam or water barrier for a particular area. It has a reverse relationship 
with land sliding. Organizing mountain roadways needs construction projects such 
as cutting or digging slopes that will change and weaken the primary geological 
structure (Sofa et al. 2021). The road distance is a primary factor in planning land-
slide zone projections. Roads in the hilly region may be one of the reasons for the 
occurrence of landslides (Catena 2008); in due time, the road changes into a different 
topographic structure. 

The NDVI is a metric used to assess the vegetation properties of a given region 
and its influence on landslides within a basin. The NDVI values range from −1 to  + 
1, exhibiting variability. The NDVI conditioning factor was derived using Sentinel-
2 satellite images with a spatial resolution of 30 m, using Eq. (23.2) as described 
(Pradhan et al. 2010). 

NDVI = 
I R  − R 
I R  + R 

. (23.2) 

In this context, “IR” refers to the infrared bands, while “R” refers to the red bands 
within the electromagnetic spectrum. 

The soil type data were acquired from Bangladesh’s Soil Resource Development 
Institute (SRDI) (Haque 2006). The study areas contain diverse soil types including 
clay loam, sandy loam, and sandy clay loam. Soil characteristics like texture and 
moisture retention capacity influence landslide susceptibility, and were incorporated 
in the analysis (Rahman et al. 2018; Petley et al. 2005). 

The occurrence of landslides is significantly influenced by land use, which serves 
as a crucial conditioning element. The land use map was generated using Sentinel-
2 satellite images and a supervised classification methodology within the ArcGIS 
software. The land use map was categorized into six distinct types. The presence of 
cultivated land and shrub vegetation primarily characterizes the research region. The 
proximity of river and road networks is a significant determinant in the incidence 
of landslides. The distances from the Road and river were measured and shown on 
a map scale of 1:500,000. This was done by digitizing the topographic map of the 
research region and using the Euclidean distance technique in the ArcGIS tool. Soil 
type and lithology are significant conditioning elements that influence the occurrence 
of landslides. The lithology and soil type of the research region was determined by 
utilizing a geological map and a soil map, respectively. The geology and soil data were 
acquired from the Ethiopian Minister of Water and Energy in Addis Ababa, Ethiopia. 
The research region has a dominating soil type known as dystric nitisols, which falls 
under one of the eight soil type classifications. The lithology in the research region 
is categorized into four distinct classes. Tertiary extrusive and intrusive rocks are the 
most prevalent lithological types. 

The LSM is prepared by summing the factors contributing to landslides for both 
Sylhet and Rangamati.
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LSM =
∑

FR ∗ (Elevation + TWI + LULC + Slope + Rainfall 

+ Lithology + NDVI + Soil Type + Distance from road). 

23.3 Results 

A spatial mapping and statistical database were created for all nine influencing factors 
in landslide susceptibility, including LULC, elevation, slope, TWI, rainfall, lithology, 
soil type, NDVI, and distance from roads, along with their respective subcategories 
for both Sylhet and Rangamati district (Fig. 23.3).

23.3.1 Sylhet 

Based on this spatial mapping of all nine factors, a statistical database was derived, 
which is illustrated in (Table 23.2 and Fig. 23.4).

LULC classification categorized the land into seven distinct classes: water, vege-
tation, flooded vegetation, cropland, buildup area, bare land, and range land. ‘Crop 
Land’ covers the majority of the land about 64.61%, and it has a low correlation to 
landslides with a FR of only 0.26. Surprisingly, even though the ‘Buildup Area’ covers 
a smaller land area of 13.85%, it exhibits a much higher FR value of 4.21, which is 
highly correlated with landslides. This is because the buildup of areas contributes to 
landslide susceptibility by clearing vegetation, disrupting natural drainage, altering 
soil properties, and increasing surface runoff (Quevedo et al. 2023). These changes 
weaken slope stability and enhance the risk of landslides, making them more likely 
in urbanized environments. 

The study area displayed an elevation range spanning from −21 m to 151 m into 
five classes. Higher elevation may increase landslide hazards by intensifying slope 
steepness and terrain instability (Rabby et al. 2022). Conversely, lower altitudes, 
notably in flat or gently sloping regions, can foster landslide vulnerability as water 
accumulation raises pore pressure and diminishes soil stability. Notably, the class 
labeled ‘13.4 m to 47.8 m’ showed a high FR value of 1.20, covering 62.56% of the 
land area.
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Table 23.2 Conditioning factors used for Landslide susceptibility mapping through FR model 
(Sylhet) 

Parameter Class name or 
description 

Histogram % of  
histogram 

Landslide 
number 

% of  
Landslide 
number 

FR 

LULC Water 2,252,687 6.59 2 16.67 2.53 

Vegetation 4,298,888 12.58 0 0.00 0.00 

Flooded vegetation 444,939 1.30 0 0.00 0.00 

Crop land 22,070,993 64.61 2 16.67 0.26 

Buildup area 4,729,986 13.85 7 58.33 4.21 

Bare land 39,226 0.11 0 0.00 0.00 

Range land 324,384 0.95 1 8.33 8.78 

Elevation −21–13.4 1,443,450 36.46 3 25.00 0.69 

13.4–47.8 2,476,386 62.56 9 75.00 1.20 

47.8–82.2 36,040 0.91 0 0.00 0.00 

82.2–116.6 2408 0.06 0 0.00 0.00 

116.6–151 342 0.01 0 0.00% 0.00 

Slope (in 
degree) 

0–8.66 3,821,341 98.34 11 91.67 0.93 

8.66–17.32 59,984 1.54 1 8.33 5.40 

17.32–25.91 4193 0.11 0 0.00 0.00 

25.91–34.64 358 0.01 0 0.00 0.00 

34.64–43.30 30 0.00 0 0.00 0.00 

TWI −7.93–3.84 1,552,684 39.36 4 33.33 0.85 

−3.84–0.24 1,347,342 34.16 4 33.33 0.98 

0.24–4.33 945,563 23.97 4 33.33 1.39 

4.33–8.43 88,942 2.25 0 0.00 0.00 

8.43–12.52 10,074 0.26 0 0.00 0.00 

Rainfall 3749.34–4246.49 1,118,082 29.55 0 0.00 0.00 

4246.49–4743.64 1,456,208 38.49 4 33.33 0.87 

4743.64–5240.79 552,827 14.61 4 33.33 2.28 

5240.79–5737.94 380,005 10.04 1 8.33 0.83 

5737.94–6235.10 276,537 7.31 3 25.00 3.42 

Lithology Creyaceous 
sedimentary rocks 

7543 14.22 7 58.33 4.10 

Neogene sedimentary 
rocks 

4980 9.39 3 25.00 2.66 

Paleogene 
sedimentary rocks 

5131 9.68 0 0.00 0.00 

Quaternary sediments 35,190 66.36 1 8.33 0.13 

Undivided 
Precambrian rocks 

186 0.35 1 8.33 23.76

(continued)
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Table 23.2 (continued)

Parameter Class name or
description

Histogram % of
histogram

Landslide
number

% of
Landslide
number

FR

Soil type Clay loam 24,713 46.94 5 41.67 0.89 

Loam 1682 3.19 0 0.00 0.00 

Sandy clay loam 26,211 49.78 7 58.33 1.17 

Clay 47 0.09 0 0.00 0.00 

NDVI Water 246,293 6.42 1 8.33 1.30 

Buildup area 907,229 23.66 4 33.33 1.41 

Barren land 689,540 17.98 2 16.67 0.93 

Shrub and grassland 1,166,047 30.41 5 41.67 1.37 

Sparse vegetation 747,499 19.49 0 0.00 0.00 

Dense vegetation 78,025 2.03 0 0.00 0.00 

Distance 
from road 

0–2738.27 15,757 41.98 12 100.00 2.38 

2738.27–5476.55 12,068 32.15 0 0.00 0.00 

5476.55–8214.83 6354 16.93 0 0.00 0.00 

8214.83–10,953.11 2524 6.72 0 0.00 0.00 

10,953.11–13,691.38 830 2.21 0 0.00 0.00

The susceptibility of a slope to landslides is impacted by its height and steepness. 
High, steep slopes are more prone to landslides due to increased gravitational forces, 
while gentle, low slopes have lower landslide risk because of better stability and 
reduced gravitational impact (Ramesh 2021). A spatial database on slope map (In 
Degree) was reclassified into five classes ranging from 0 to 43.300. The class labeled 
‘0–8.660’ stands out with a low FR ratio of 0.93, covering a significant 98.34% of the 
land area and being associated with 91.67% of landslide occurrences. On the other 
hand, the class ‘8.660–17.320’ exhibits a high FR ratio of 5.40 but covers only 1.54% 
of the land, with 8.33% of landslide occurrences. 

The TWI data is divided into five classes (−7.93 to −3.84, −3.84 to 0.24, 0.24 to 
4.33, 4.33 to 8.43, 8.43 to 12.52), with the class ‘0.24 to 4.33’ having a high FR value 
of 1.39 and all the landslide events occurred in the range of −7.93 to 4.33. According 
to (Różycka et al. 2017), low TWI values have the potential to affect slope stability, 
particularly in the top areas and on the steep head scarps of landslides, making them 
more susceptible to landslides. High TWI values also signify regions prone to water 
accumulation, escalating landslide risk. They often denote concentrated drainage 
paths, suggesting potential erosion and instability. In contrast, lower TWI values 
imply improved drainage, reducing landslide vulnerability. 

Rainfall data is categorized into five classes spanning from 3749.34 mm to 
6235.10 mm. The class ‘5737.94–6235.10’ exhibits a high FR value of 3.42 as heavy 
rainfall in Bangladesh, particularly during the monsoon season, escalates the risk of 
landslides (Hossain 2020). Urban development on hillsides and settlement at their
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Fig. 23.4 Factors used for FR modeling (Rangamati)
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bases worsens susceptibility. Rainfall impacts soil’s pore water pressure, altering 
landslide danger, and emphasizing the importance of understanding rainfall patterns 
for effective hazard management. The type of rocks in the area is also classified into 
5 categories. 

The lithological composition of the basin plays a crucial role in influencing slope 
stability and the occurrence of landslides. Stronger rock formations offer greater 
resistance to external forces, making them less susceptible to landslides, while weaker 
rock types are more vulnerable to such events (Yalçın 2008). From a lithological 
perspective, areas with prevalent marl, limestone, shale, gypsum, and marly conglom-
erate formations are at a higher risk of landslides. Therefore, assessing the density 
of landslides within different geological structures is essential to understand their 
propensity for such events better (Abedini and Tulabi 2018). ‘Undivided Precam-
brian Rocks’ has a notably high FR value of 23.76, covering only 0.35% of the land 
area but being associated with 8.33% of landslides. 

Soil type data includes clay loam, loam, and sandy clay loam. ‘Sandy Clay Loam’ 
stands out with a high FR value of 1.17 and covers 49.78% of the land area, with 
58.33% of landslide occurrences. However, the susceptibility of different soil types to 
landslides is influenced by factors like composition, permeability, and shear strength, 
and sandy clay loam soils with a higher sand content exhibit better drainage and higher 
shear strength, rendering them less susceptible to landslides (Han et al. 2019a, b). The 
reason is that landslide susceptibility does not solely depend on soil characteristics; 
rainfall, distance from road factors, etc. influence it. As we see on the soil type 
map, most of the sandy clay loam portion is placed in the north-western and south-
western zones. But at the same time, more rainfall happens in that zone, and the main 
road linkages are there in that zone. Clay loam soils, with a high clay content, are 
more prone to landslides due to poor drainage and high-water retention, leading to 
increased pore pressure and reduced shear strength. That’s why this zone has a low 
FR but it has witnessed almost 42% of landslide occurrences. 

The NDVI is a valuable tool for identifying landslide scars, tracking post-landslide 
changes, and assessing landslide susceptibility (Qu et al. 2020). NDVI data is cate-
gorized into 6 classes which ‘Shrub and Grassland’ has a relatively high FR value of 
1.37 with 41.67% of landslide occurrences. Roads play a crucial role in concentrating 
runoff, which is evident from experience and existing landslide statistics observed 
during road reconstruction and widening projects (Abedini and Tulabi 2018). 

The distance from the road is categorized into five classes (0–2738.27 m, 2738.27– 
5476.55 m, 5476.55–8214.83 m, 8214.83–10,953.11 m, 10,953.11–13,691.38 m). 
The class ‘0–2738.27’ stands out with a high FR value of 2.38, covering 41.98% 
of the land area and being associated with 100.00% of landslide occurrences. This 
indicates a strong correlation between landslides and proximity to roads in this class 
as the proximity of roads to areas at risk of landslides, especially near rivers, heightens 
the landslide risk (Zhou et al. 2023).
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23.3.2 Rangamati 

Based on this spatial mapping of all nine factors, a statistical database was derived 
which is illustrated in (Table 23.3).

LULC is characterized by 7 distinct classes in which flooded vegetation, covering 
3.08% of the area, exhibits a higher correlation of sporting an FR of 9.27. Flooded 
vegetation can make landslides more severe by reducing slope strength and root 
stability (Mirus et al. 2017). Slopes become more susceptible to collapse when floods 
sweep away vegetation. Because of the flooded vegetation, the soil is less cohesive 
and has higher pore pressures, which increases the risk of sliding. It also modifies the 
dynamics of water, impacting the stability of slopes. On the other hand, water plays 
a key role in triggering landslides by saturating and destabilizing soil as infiltration 
raises pore pressure, reducing soil strength, and causing slope failure (Abebe et al. 
2021). Changes in land use like deforestation disrupt the natural water balance, 
increasing landslide risk. Steep terrain and poor land management compound this 
vulnerability, making water a critical factor in landslides. That’s why, water occupies 
6.17% of the total coverage area and is associated with a high FR of 2.32, which is 
highly correlated with landslide events. 

Moving on to the elevation assessment, the Rangamati region displays an elevation 
range spanning from −37 to 1012 m. Notably, the class of −37 to 172.8 m, covering 
74.12% of the area, is highly correlated with landslides, boasting an 85.71% correla-
tion and an FR of 1.16. Other elevation classes exhibit lower or negligible correlations 
with landslide occurrences. 

Slope, measured in degrees, is another crucial factor. The analysis categorizes 
slope data into five classes. The class spanning 13.7 to 27.4 degrees, covering 30.35% 
of the area, displays a strong correlation with landslides and a high FR of 3.30. In 
contrast, other slope classes show lower or no significant correlations with landslides. 

TWI is divided into five classes and the class from −4.41 to 0.21 exhibits a higher 
FR of 2.43. 

Rainfall data is also taken into account, and segmented into five distinct classes. 
The class within the range of 2488.14 to 2592.69 mm shows a high correlation with 
six landslide occurrences, resulting in a high FR of 3.11. Heavy rainfall is more 
susceptible to landslides but low rainfall can also indirectly cause landslides by 
drying up the soil, diminishing its cohesiveness, and increasing the susceptibility of 
slopes to collapse, particularly in steep places where constant rainfall is essential for 
soil stability (Ray and Lazzari 2020). Prolonged periods of low rainfall can cause 
soil desiccation and decreased moisture content, which raises the risk of landslides 
during periods of heavy rainfall. 

The lithological composition is an influential factor, with Neogene Sedimentary 
Rocks covering 74.52% of the area and displaying a strong correlation with seven 
landslide occurrences, resulting in an FR of 1.34. 

Soil type is another critical consideration, and the analysis reveals that Clay covers 
only 19.29% of the region, but is highly correlated with landslides at 85.71% land-
slide occurrence with an FR of 4.44. According to (Chen et al. 2010), clay content
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Table 23.3 Conditioning factors used for landslide susceptibility mapping through FR model 
(Rangamati) 

Parameter Class name or 
description 

Histogram % of  
histogram 

Landslide 
number 

% of  
landslide 
number 

FR 

LULC Water 4,787,643 6.17 1 14.29 2.32 

Vegetation 47,091,419 60.69 3 42.86 0.71 

Flooded vegetation 2,390,951 3.08 2 28.57 9.27 

Crop land 21,217,917 27.35 0 0.00 0.00 

Buildup area 894,206 1.15 1 14.29 0.19 

Bare land 83 0.00 0 0.00 0.00 

Range land 1,209,344 1.56 0 0.00 0.00 

Elevation −37–172.8 4,869,669 74.12 6 85.71 1.16 

172.8–382.6 1,302,929 19.83 1 14.29 0.72 

382.6–592.4 272,837 4.15 0 0.00 0.00 

592.4–802.2 111,246 1.69 0 0.00 0.00 

802.2–1012 13,692 0.21 0 0.00 0.00 

Slope (in 
degree) 

0–13.7 4,100,448 66.08 0 0.00 0.00 

13.7–27.4 1,883,125 30.35 7 100.00 3.30 

27.4–41.2 210,154 3.39 0 0.00 0.00 

41.2–54.9 10,953 0.18 0 0.00 0.00 

54.9–68.7 571 0.01 0 0.00 0.00 

TWI −9.05–4.41 4,496,591 63.80 3 42.86 0.67 

−4.41–0.21 1,240,896 17.61 3 42.86 2.43 

0.21–4.84 741,375 10.52 0 0.00 0.00 

4.84–9.48 560,589 7.95 1 14.29 1.80 

9.48–14.11 8663 0.12 0 0.00 0.00 

Rainfall (in 
mm) 

2383.60–2488.14 1,108,924 17.43 1 14.29 0.82 

2488.14–2592.69 1,753,364 27.56 6 85.71 3.11 

2592.69–2697.24 2,782,028 43.73 0 0.00 0.00 

2697.24–2801.79 600,009 9.43 0 0.00 0.00 

2801.79–2906.34 116,992 1.84 0 0.00 0.00 

Lithology Water 16,351 25.29 0 0.00 0.00 

Neogene sedimentary 
rocks 

48,182 74.52 7 100.00 1.34 

Quaternary sediments 127 0.20 0 0.00 0.00 

Soil type Loam 50,299 80.61 1 14.29 0.18 

Sandy clay loam 63 0.10 0 0.00 0.00 

Clay 12,038 19.29 6 85.71 4.44 

NDVI Water 380,302 5.93 0 0.00 0.00

(continued)
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Table 23.3 (continued)

Parameter Class name or
description

Histogram % of
histogram

Landslide
number

% of
landslide
number

FR

Buidup area 721,854 11.26 0 0.00 0.00 

Barren land 219,522 3.43 0 0.00 0.00 

Shrub and grassland 803,263 12.53 2 28.57 2.28 

Sparse vegetation 1,925,790 30.05 2 28.57 0.95 

Dense vegetation 2,358,592 36.80 3 42.86 1.16 

Distance 
from road 

0–10,644.08 19,602 30.69 6 85.71 2.79 

10,644.08–23,616.57 15,828 24.78 1 14.29 0.58 

23,616.57–38,917.44 13,171 20.62 0 0.00 0.00 

38,917.44–58,542.58 9116 14.27 0 0.00 0.00 

58,542.58–84,820.07 6160 9.64 0 0.00 0.00

significantly impacts soil mass failure, with moderate clay (5–10%) causing quick 
failures in short rainfall while low (2.5–5%) and high clay (>10%) soils need longer 
rain to fail. High clay reduces cohesion, aiding failure. Research suggests >2.5% 
clay is needed for landslides (Liu et al. 2021). Other soil type categories exhibit no 
or low correlations with landslide occurrences. 

NDVI is categorized into six classes, a prominent factor causing landslides. 
According to (Asada and Minagawa 2023), dense vegetation, such as forests, can 
cause landslides by absorbing rainfall and blocking it, which results in runoff and 
soil saturation. Compared to forests, grasslands, and shrubs are more susceptible to 
landslides because of their weaker and less stable root systems than dense vegetation. 
That’s why we can see that shrub and grassland demonstrate a relatively high corre-
lation of 28.57% with two landslide occurrences and an FR of 2.28. Dense vegetation 
also exhibits high correlations with landslide events with an FR of 1.16. 

Lastly, the distance from roads is examined and segmented into five classes where 
the class covering 0–10,644.08 m displays a strong correlation of 85.71% landslide 
events and an FR of 2.79 as areas closer to roads increase higher landslide occurrence 
(Zhou et al. 2023). 

23.3.3 Comparison of Factors Between Sylhet and Rangamati 

In both Sylhet and Rangamati regions, various factors contribute to landslide suscep-
tibility, but the significance of these factors and their correlations differ between the 
two areas. 

In Sylhet, ‘Buildup Area’ and ‘Crop Land’ significantly impact landslide suscep-
tibility as urbanization disrupts natural drainage and soil properties, and also increase 
in deforestation increases susceptibility. Elevation influences susceptibility as steep
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slopes increase the chances of landslides. Heavy rainfall and certain geological 
formations increase susceptibility. Road proximity is a critical factor, with areas 
closer to roads showing a strong correlation with landslides. On the other hand, 
in Rangamati, features like ‘Flooded Vegetation’ and ‘Water’ exacerbate landslide 
susceptibility due to their effects on soil cohesion and slope stability. Slope, TWI, 
and heavy rainfall also contribute to susceptibility. ‘Clay’ soil type is a significant 
factor, with high clay content increasing cohesion and the risk of landslides. Dense 
vegetation and proximity to roads also play roles in landslide susceptibility. The 
key differences between the two regions lie in the factors influencing susceptibility. 
Sylhet’s susceptibility is affected by land use changes and urbanization, while Ranga-
mati experiences higher susceptibility due to flooded vegetation and water. Both 
areas share common factors like slope, TWI, and road proximity, highlighting their 
significance in landslide risk assessment. 

23.3.4 FR Factors Ranking for Sylhet and Rangamati 

Landslides are a common risk in terrain with slopes, resulting in fatalities in trans-
portation routes, rural industrial sites, and urban areas (Froude and Petley 2018). 
Seismic activity, prolonged periods of heavy rain, creep fault occurrences, etc. are 
the prime reasons for landslides (Barbano et al. 2014). Risk assessment for land-
slides includes environmental, topographic, and social-based data sources. So, the 
factor-based analysis in the FR model provides immense details about the landslide 
susceptibility. Landslide databases of the highest caliber are necessary for assessing 
the danger of landslides where this landslide inventory is a fundamental tool for risk 
analysis and land planning, it represents a foundation of information and greatly 
aids the local authorities in making decisions (Froude and Petley 2018; Colombo 
et al. 2005). These NASA databases aid in the computation of the FR technique for 
Bangladesh’s Sylhet and Rangamati during vulnerability assessments. 

In Sylhet and Rangamati, the FR study details landslide vulnerability using nine 
parameters. In contrast to Sylhet, which is located in northeast Bangladesh, Ranga-
mati symbolizes the southeast. The landslide causes at these two locations change 
depending on factors, as seen by the disparity in height and topographic conditions. 

23.3.5 Comparing the Susceptibility Level of Landslide 
Between Sylhet and Rangamati 

In comparing landslide susceptibility between Sylhet and Rangamati districts, it’s 
evident that Sylhet has a greater number of villages and populations in the ‘Moderate’ 
zone compared to Rangamati (Fig. 23.5).
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Fig. 23.5 Landslide susceptibility map (Sylhet) 

Massive hill cutting in Sylhet has increased the risk of landslides (Islam et al. 
2013). The problem is exacerbated by widespread hill damage brought on by housing 
firms breaking anti-hill cutting rules and misunderstanding the environmental effects. 
With its smaller land area and higher population density, Sylhet faces a more concen-
trated impact of land-use changes, deforestation, and construction activities that 
increase the risk of landslides. On the other hand, Rangamati has a higher percentage 
of villages with ‘High’ and ‘Very High’ ranges that are susceptible to landslides, and 
a higher number of people reside in these high-risk areas (Fig. 23.6).

Urbanization, forest conversion, uncontrolled hill cutting, and home-building on 
unstable slopes all increase the risk of landslides in hilly areas (Ahmed 2021). 
Especially in urbanized hill settlements, flash floods can be exacerbated by heavy 
monsoon rainfall. Furthermore, the topographical differences in these districts make 
it inherently more susceptible to landslides, especially during heavy rainfall. The 
statistics indicate the pronounced disparities in landslide susceptibility, highlighting 
the importance of considering geographical factors in disaster risk assessment and 
management. 

The percentage of sensitive places varies according to the circumstances and FR 
factors in Sylhet and Rangamati. According to (Table 23.4), Rangamati has a high 
landslide vulnerability due to soil type, LULC, and TWI factors. The most vulnerable 
locations to landslides are those with vegetation to built-up LULC transition types, 
while the worst-affected industries include primary economic activities like fishing 
and jhum farming (Abedin et al. 2020). Meanwhile, lithology, LULC, and rainfall are
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Fig. 23.6 Landslide susceptibility map (Rangamati)

major definers for the highly susceptible areas in Sylhet. The Surma River’s discharge 
pattern is altering in tandem with the rainfall patterns in the northeastern region of 
Bangladesh which is an influential reason for disasters like floods, landslides, and 
so on (Akter et al. 2019). In Sylhet, the high landslide-prone zones are around 300 
km2 or nearly 10% of the total area; in Rangamati, the size is above 1000 km2.
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Table 23.4 FR ranking of factors between two regions 

Parameter Sylhet FR Ranking Rangamati FR Ranking 

LULC 15.77 (21.12%) 2 12.49 (31.05%) 1 

Elevation 1.88 (2.52%) 9 1.88 (4.67%) 8 

Slope (in degree) 6.33 (8.48%) 4 3.30 (8.2%) 7 

TWI 3.21 (4.3%) 6 4.90 (12.18%) 2 

Rainfall (mm) 7.40 (9.91%) 3 3.93 (9.77%) 5 

Lithology 30.65 (41.04%) 1 1.34 (3.33%) 9 

Soil type 2.06 (2.76%) 8 4.62 (11.48%) 3 

NDVI 5.00 (6.70%) 5 4.40 (10.94%) 4 

Distance from road (3.19%) 7 3.37 (8.38%) 6 

Table 23.5 Landslide susceptibility zone 

Ranges Sylhet 
villages 

Rangamati 
villages 

Sylhet 
population 

Rangamati 
population 

Sylhet area 
(km2) 

Rangamati 
area (km2) 

Very Low 473 
(13.89%) 

1 (0.07%) 495,349 
(15.66%) 

363 (0.07%) 588.44 
(17.23%) 

2.14 
(0.04%) 

Low 797 
(23.4%) 

1115 
(73.6%) 

820,129 
(25.92%) 

367,219 
(71.24%) 

999.21 
(29.26%) 

4363.79 
(75.72%) 

Moderate 1713 
(50.29%) 

81 (5.35%) 1,466,157 
(46.35%) 

27,620 
(5.36%) 

1505.10 
(44.07%) 

317.85 
(5.52%) 

High 311 
(9.13%) 

225 
(14.85%) 

285,510 
(9.03%) 

86,093 
(16.7%) 

257.77 
(7.55%) 

787.56 
(13.67%) 

Very High 112 
(3.29%) 

93 (6.14%) 96,348 
(3.05%) 

34,159 
(6.63%) 

64.48 
(1.89%) 

291.67 
(5.06%) 

Source Directorate General of Family Planning, MIS Unit (2014) 

Roughly twenty villages in Sylhet and ten in Rangamati are located in the risk zones 
(Table 23.5). 

To integrate policies and deliver services, the LSM offers comprehensive 
information on the people and locations that are vulnerable to landslides. 

23.4 Discussion 

This study provides important insights into landslide susceptibility and risk assess-
ment in Bangladesh’s Sylhet and Rangamati hilly regions using geostatistical and 
geospatial modeling techniques. The results highlight key differences in land-
slide causative factors between the two regions, with implications for targeted risk 
mitigation strategies.
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In Sylhet, the FR analysis identified built-up areas, crop lands, lithology, rainfall, 
slope, and proximity to roads as key factors influencing landslide occurrence. Built-up 
areas exhibited the highest FR value (4.21), indicating significantly increased land-
slide susceptibility from urbanization, land use changes, and anthropogenic activities 
like deforestation and unplanned construction (Han et al. 2019a, b; Rahman et al. 
2013). Rahman et al. (2013) noted that rapid and uncontrolled urban growth on 
slopes overlooking the Surma River basin escalates landslide risks in Sylhet City. 
Crop lands also contribute to landslides by replacing natural vegetation, disrupting 
drainage patterns, and increasing surface runoff (Quevedo et al. 2023). Specific 
lithological formations like cretaceous sedimentary rocks (FR 4.10) further increase 
susceptibility in Sylhet (Rabby and Li 2019). Areas of high rainfall, steep slopes, 
and proximity to roads likewise raise landslide hazards. These findings align with 
prior research on landslide conditioning factors in Bangladesh (Jebur et al. 2014; 
Kirschbaum et al. 2015). 

In contrast, Rangamati’s landslide susceptibility is strongly influenced by flooded 
vegetation, water, clay soils, slope, and road proximity. Flooded vegetation showed 
the highest FR (9.27), reflecting increased instability from soil saturation, loss of 
root cohesion, and altered drainage (Mirus et al. 2017). Water bodies also destabilize 
slopes, especially on steep terrain (FR 2.32) (Dahal and Hasegawa 2008). Heavy rain-
fall further elevates pore water pressure and reduces shear strength, making Ranga-
mati’s wet, vegetated slopes more prone to failure (Kirschbaum et al. 2015). Clay 
content is another critical factor, with clay soils exhibiting a high landslide correla-
tion (85.71%) and an FR of 4.44. Louati et al. (2023) noted that clayey soils have 
higher moisture retention, lower permeability, and increased risk of sliding. Besides 
topographical and hydrological factors, proximity to roads remained influential in 
Rangamati like Sylhet. 

The comparative FR analysis thus highlights the distinct landslide causation 
patterns based on the unique geographical settings of each region. While some 
common factors like roads exist, region-specific elements like lithology in Sylhet 
and flooded vegetation in Rangamati are major determinants of susceptibility. Inte-
grating these differences is vital for targeted risk management (Reichenbach et al. 
2014; Kirschbaum et al. 2015). Structural measures like retaining walls and improved 
drainage infrastructure in built-up areas can mitigate landslide impacts in Sylhet City 
(Rahman 2013). In Rangamati, restoring natural vegetation, avoiding developments 
on unstable clayey slopes, and regulating anthropogenic changes to hydrology are 
priority interventions (Mirus et al. 2017). Petley (2012) noted that susceptibility 
models should guide context-specific mitigation strategies. 

The landslide susceptibility maps generated using the FR model also showcase 
the spatial patterns of landslide vulnerability across Sylhet and Rangamati. In Sylhet, 
the moderate risk zone covers the highest share of villages (50.29%) and population 
(46.35%), clustered around Sylhet City and other urbanized areas. In Rangamati, 
villages (73.60%) and people (71.24%) are predominantly concentrated in low land-
slide susceptibility areas, with the high risk zone accounting for 20.99% of villages 
and 22.46% of the population. These maps provide actionable information to local
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authorities for targeted disaster risk reduction planning based on vulnerability levels 
(Guzzetti et al. 2012). 

Several limitations of this study provide avenues for future research. First, the anal-
ysis considered only past landslide locations. Using satellite data could strengthen it 
by integrating landslide triggering factors like rainfall thresholds (Kirschbaum et al. 
2015; Petley 2012). Second, the FR model could include more landslide conditioning 
factors like geology and curvatures (Jebur et al. 2014). Lastly, different modeling 
techniques like logistic regression and machine learning can be used alongside FR 
for comparison and validation (Khosravi et al. 2018; Jebur et al. 2014). Nonetheless, 
this study delivers valuable insights into landslide susceptibility patterns in two major 
hilly regions of Bangladesh using robust geospatial analytics. The findings can guide 
evidence-based policies for landslide risk reduction and sustainable development. 

23.5 Conclusion 

This chapter delves into the complex realm of landslide susceptibility, with a focus 
on the various factors that influence this natural hazard, particularly in the Sylhet and 
Rangamati districts of Bangladesh. The analysis considers nine influential factors: 
LULC, elevation, slope, TWI, precipitation, lithology, soil type, NDVI, and distance 
from roads. By employing the FR model, the chapter provides valuable insights into 
the factors that shape landslide susceptibility in these regions. 

The findings reveal that both regions are prone to landslides, but the underlying 
causes differ significantly. In Sylhet, susceptibility is tied to urbanization, land-use 
changes, and features such as ‘Built-up Area’ and ‘Crop Land.’ Conversely, Ranga-
mati’s susceptibility is largely due to elements like ‘Flooded Vegetation’ and ‘Water,’ 
which are influenced by unique topographical and environmental features, among 
other factors. Additionally, both regions’ landslide susceptibility is influenced to 
varying degrees by elevation, slope, heavy rainfall, lithology, TWI, soil type, NDVI, 
and proximity to roads. 

A comparative analysis between Sylhet and Rangamati underscores the impor-
tance of geographical and environmental factors in determining landslide suscep-
tibility. Factors such as concentrated urbanization and deforestation in Sylhet, and 
unique topographical features in Rangamati, inherently increase their susceptibility 
to landslides. The Landslide Susceptibility Map (LSM) indicates that 18.73% of 
Rangamati’s areas and 9.44% of Sylhet’s areas are classified as highly to extremely 
susceptible to landslides. 

This chapter plays a crucial role in identifying areas prone to landslides, enabling 
a swift determination of which regions are more susceptible to various factors. For 
instance, the Sylhet region is more vulnerable to changes in land use and urbaniza-
tion, while Rangamati is more susceptible due to its topography. The comprehensive 
analysis provided in this chapter allows for a targeted approach to understanding the 
factors contributing to vulnerability in different regions. By pinpointing the specific
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challenges each region faces, we can devise effective strategies and take neces-
sary measures to minimize landslide risks. This organized approach ensures a more 
effective and appropriate response to the specific vulnerabilities caused by different 
geographical and environmental conditions. 
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