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A B S T R A C T   

Meteorological drought, driven by inadequate precipitation, has significant repercussions for water resources, 
agriculture, and human well-being. This study conducted an extensive assessment of meteorological drought in 
northern Bangladesh, employing remote sensing indices and machine learning techniques. The main aim was to 
evaluate meteorological drought occurrences in northern Bangladesh from 2010 to 2019, utilizing seven drought 
parameters and a machine learning model. Utilizing a Random Forest (RF) model, this study employed the 
Standardized Precipitation Index (SPI) as the dependent variable and seven remote sensing indices as inde-
pendent variables. Through this methodology, the study assessed the significance of these indices generated by 
the model and integrated them, culminating in the creation of a meteorological drought distribution map 
spanning 2010 to 2019. This approach offers novel insights by probing the interplay and collective impacts of 
these indices, shedding light on previously unexplored aspects of regional drought patterns of northern 
Bangladesh. The major findings showed that precipitation strongly influenced both short-term and long-term 
meteorological drought episodes. Moreover, land surface-related indices, such as Evapotranspiration (ET) and 
Normalized Difference Water Index (NDWI), exhibited a more pronounced impact on short-term drought oc-
currences, while vegetation-related indices like Normalized Multi-band Drought Index (NMDI) and Normalized 
Difference Vegetation Index (NDVI) demonstrated greater influence over long-term drought events. During this 
timeframe, the Rajshahi division experienced frequent extreme and severe drought events. Moderate droughts 
and abnormally dry conditions were widespread. The Barind tract area consistently faced moderate to extreme 
droughts, with exceptions in 2011, 2014, and 2019. On average, over 5% of the region had extreme droughts, 
while more than 12% experienced severe droughts during this decade. Long-term drought indicators (SPI 6 and 
SPI 9) consistently showed higher frequencies of extreme and severe droughts compared to short-term indicators 
(SPI 1 and SPI 3), emphasizing the influence of prolonged rainfall deficits on extreme droughts and the relevance 
of longer time frames for severe drought dynamics. The RF model demonstrated strong performance with ac-
curacy ranging from 81% to 95%. Low prediction errors (RMSE 6% to 31%) and high out-of-bag (OOB) accuracy 
ranging from 76% to 98% highlighted its accuracy. The F1 score consistently exceeded 76%, indicating high 
precision and recall. Cross-validation values ranged from 78% to 94%, affirming reliable generalization to new 
data. Incorporating the main findings, this study contributes valuable insights for the formulation of targeted 
drought mitigation strategies in northern Bangladesh. It is imperative to note that the scope of this study is 
confined to the northern region of Bangladesh, and generalizing these findings to other regions should be 
exercised with caution. Nevertheless, the research methodology and approach can serve as a model for future 
studies in related fields, advancing knowledge of how to assess droughts using remote sensing and machine 
learning methods.   

1. Introduction 

Drought, one of the biggest hazards in the world, results in water 
shortages, which not only make economic losses more susceptible but 

also seriously endanger human life (Park et al., 2016; Quiring and 
Papakryiakou, 2003; Wu et al., 2001). The onset of drought is a gradual 
and intricate phenomenon that often commences with inadequate levels 
of precipitation (Gao et al., 2023). Almost every year, drought-related 
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agricultural failure and water shortage issues plague many nations (Park 
et al., 2016). According to a study, drought causes $6 billion to $8 billion 
in worldwide economic loss annually, considerably exceeding other 
natural disasters (He et al., 2021). Bangladesh is one of the nations that 
are susceptible to natural disasters, and drought is a significant disaster 
there, as are floods, cyclones, coastal erosion, sea level rise, salinity 
intrusion, and storm surges (Akash et al., 2023; Rahman and Lateh, 
2016; Rudra and Sarkar, 2023; Sarkar et al., 2023, Sarkar et al., 2021). 
In the past five decades, Bangladesh has suffered about twenty severe 
droughts (Chakraborty et al., 2022; Islam et al., 2022; Rahman and 
Lateh, 2016). Drought has a disproportionately negative impact on the 
northern regions of the country, including the Barind tract and the 
Teesta floodplain areas, due to high rates of poverty, reliance on agri-
culture, a lack of adaptive capacity, and a high degree of seasonal and 
annual rainfall variability (Habiba et al., 2011; Shahid and Behrawan, 
2008). According to many studies, Bangladesh’s northern region is a 
hotspot for drought and frequently experiences drought events (Haque 
et al., 2000; Islam et al., 2022; Rahman and Lateh, 2016). In the past few 
decades, several drought phenomena have affected the 16 administra-
tive regions that make up northern Bangladesh (Islam et al., 2022). 

Drought is a relative term that can mean many things depending on 
the specifics of the observations, the operational metrics, and the pre-
vailing weather patterns (Dracup et al., 1980; Islam et al., 2022) and 
there are several ways in which drought can manifest (Park et al., 2016; 
Wilhite et al., 2007). Based on widely used classification techniques, 
drought can be categorized into four distinct types: meteorological 
drought, agricultural drought, hydrological drought, and socioeconomic 
drought (Heim, 2002; Młyński et al., 2021; Shi et al., 2022; Yin et al., 
2021). A lack of precipitation leads to meteorological drought, alter-
natively, in instances where dry climatic conditions prevail in a certain 
region (Młyński et al., 2021), and prolonged meteorological dryness 
leads to agricultural drought through reducing soil moisture levels (Park 
et al., 2016; Sandeep et al., 2021). Drought causes and effects are 
interlinked through feedback mechanisms and couplings in land-
–atmosphere dynamics (Rhee et al., 2014). To accurately anticipate and 
evaluate drought, as well as to keep tabs on the current drought situa-
tion, knowledge of these aspects is essential (Park et al., 2016; Tadesse 
et al., 2005). Assessment and monitoring of drought can play an 
important part in comprehending regional drought traits and aiding in 
the creation of an effective drought management plan for northern 
Bangladesh, and so governments, scientists, and environmentalists are 
all involved in the development of effective management policies to 
lessen the issue triggered by drought (Rahman and Lateh, 2016). 

There are a number of drought indices that can be used to track the 
severity of drought and the state of the water supply, both of which can 
be crucial in forming effective plans to deal with the effects of drought in 
the future (Alley, 1984; Quiring and Papakryiakou, 2003; Yang et al., 
2023). Several drought indices have been created with the use of real- 
time precipitation data, including the Standardized Precipitation Index 
(SPI) (McKee et al., 1993), the Standardized Precipitation Evapotrans-
piration Index (SPEI) (Vicente-Serrano et al., 2010), Palmer Drought 
Severity Index (PDSI) and Moisture Anomaly Index (Palmer, 1965), and 
the China-Z index (Wu et al., 2001), to mention a few. At the 2009 World 
Meteorological Organization meeting, the SPI was recommended as a 
standard global meteorological drought indicator (Park et al., 2016; 
Wardlow et al., 2012). On the contrary, with satellite data’s extensive 
geographic coverage and high temporal resolution, drought assessment 
and tracking can be done effectively (Swain et al., 2011). It is possible to 
analyze drought using satellite-based drought factors since satellite 
remote sensing has been used to develop products linked to drought 
(Anderson et al., 2011). The complexity and diversity of drought cannot 
be completely explained by a single indicator because there are many 
different factors that contribute to it (Park et al., 2016). Therefore, 
mixing different drought indices is useful for assessing drought (Hayes 
et al., 2005; Mizzell, 2008; Wardlow et al., 2012) and this mixing indices 
approach started in the 1990s (Heim, 2002). Therefore, it is feasible to 

properly assess and monitor drought situations for various climatic 
zones by combining satellite derived drought variables and metrics 
(Park et al., 2016). A lot of studies showed that, there are some remote 
sensing indices that are widely used to assess and predict meteorological 
drought such as, Normalized Difference Vegetation Index (NDVI) (Das 
and Sarkar, 2023; Fathi-Taperasht et al., 2022; Gu et al., 2007; Han 
et al., 2019), Normalized Difference Water Index (NDWI) (Gao, 1996; 
Gu et al., 2007), Normalized Difference Drought Index (NDDI) (Gu et al., 
2007; Park et al., 2016), Normalized Multi-band Drought Index (NMDI) 
(Aksoy et al., 2019; Wang and Qu, 2007), Normalized Difference 
Moisture Index (NDMI) (Das et al., 2023), Evapotranspiration (ET) 
(Jiang et al., 2021; Lambert et al., 2013; Zhan et al., 2021), and satellite 
derived Precipitation index (Jiang et al., 2021; Park et al., 2016). Long- 
term drought is strongly correlated with vegetation indices like NDVI 
and NMDI, whereas short-term drought is strongly correlated with sur-
face related indices like ET (Park et al., 2016). To assess meteorological 
drought, it is important to consider what weighting scheme to use when 
blending these types of indices together because different factors have 
different effects on drought according to the region, and the type of 
drought (Park et al., 2016). Here’s where various machine learning 
models come in. Machine learning models can effectively rank the sig-
nificance of different drought indices such as NDVI, NDWI, ET, etc. given 
their corresponding drought indicators such as SPI, SPEI, PDSI, etc. (Han 
et al., 2019; Park et al., 2016) and those weights are widely used as the 
weights of the indices for the blending approach (Park et al., 2016). 
There are a lot of models available and used for assessing droughts and 
identifying the relative importance of remote sensing indices such as, 
Random Forest (RF) (Feng et al., 2019; Mokhtari and Akhoondzadeh, 
2020; Park et al., 2016), Artificial Neural Network (ANN) (Belayneh 
et al., 2014; Citakoglu and Coşkun, 2022; Saha et al., 2021), Support 
Vector Regression (SVR) (Belayneh et al., 2014), Adaptive Neuro Fuzzy 
Inference System (ANFIS) (Citakoglu and Coşkun, 2022), Markov Chain 
(Rezaeianzadeh et al., 2016) and so on. Among them, RF is one of the 
most effective models for drought assessment (Park et al., 2016) and 
quantifying the importance of drought indices by reducing errors such as 
overestimation and sensitivity to the training data configuration (Brei-
man, 2001; Yang et al., 2023). 

Several studies like, drought hotspot analysis using local indicators 
(SPI and VCI) (Islam et al., 2022), modeling of climate induced drought 
using rainfall and relative humidity (Rahaman et al., 2016), evaluating 
the spatiotemporal characteristics of drought using Effective Drought 
Index (EDI) (Kamruzzaman et al., 2019), observing meteorological 
drought trends using the EDI (Mondol et al., 2021), drought risk 
assessment using SPI and some socio-economic factors (Shahid and 
Behrawan, 2008) have been done in the northern region over the years. 
But most of them have often focused on individual factors without 
thoroughly considering their combined effects in the context of a 
meteorological drought indicator, different remote sensing indices and a 
machine learning approach (Das et al., 2023; Sultana et al., 2021). The 
above cited studies did not analyze how satellite-derived drought in-
dicators affect meteorological drought severity in northern Bangladesh. 
However, drought indicators’ intricate relationships, relative impor-
tance, and effects on meteorological drought in this region have yet to be 
fully investigated and there is a lack of adequate research on the 
spatiotemporal distribution of drought concerning frequency, intensity 
in the northern region (Islam et al., 2022; Kamruzzaman et al., 2019; 
Mondol et al., 2021). While various drought indices have been devel-
oped using real-time precipitation data, the integration of diverse 
remote sensing indices with a machine learning model has been less 
extensively investigated (Anderson et al., 2011; Vicente-Serrano et al., 
2010). This study seeks to bridge these gaps by providing a systematic 
analysis of meteorological drought patterns in the northern region of 
Bangladesh using remote sensing indices and a machine learning model. 
By integrating seven satellite-derived drought indices (i.e., NDVI, NDWI, 
NDMI, NDDI, NMDI, ET and Precipitation) while using SPIs at varying 
time scales (i.e., 1-month, 3-month, 6-month and 9-month) as 
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meteorological drought indicators and employing a robust machine 
learning model, the Random Forest (RF), this study seeks to quantify the 
individual and combined impacts of these indices on meteorological 
drought severity. This study blended drought indices using the RF model 
to assess their value and use them as weights for each index for each 
drought indicator (SPI) from 2010 to 2019 in northern Bangladesh. 
Through this approach, this study aims to uncover the nuanced in-
teractions between various remote sensing indices and the meteoro-
logical drought indicator (SPI), offering insights that have been 
previously unexplored in this specific region. This study holistically 
evaluates several drought indices and uses the RF model to quantify 
these parameters to better understand meteorological drought dynamics 
in northern Bangladesh, unlike previous studies that focused on specific 
drought indices or did not examine their combined influence through 
machine learning. 

Overall, the aim of this study is to examine several drought indicators 
derived from satellite imagery to determine how well they are connected 
to identify meteorological drought and which indicators are most 
responsible for drought events in northern Bangladesh. The objectives of 
this research were 1) to comprehensively assess drought conditions 
based on satellite-derived drought factors from 2010 to 2019 with a 
focus on identifying nuanced and region-specific patterns and 2) to 
conduct an in-depth investigation of meteorological drought by exam-
ining influential drought factors and employing a random forest model, 
aiming to provide a more detailed and context-specific understanding of 
drought dynamics during the study period. Ultimately, the findings of 
this study will provide a crucial basis for the development of specific 
measures to mitigate drought and improve resilience in the northern 
region, which experiences recurrent drought occurrences. This research 
is pivotal for fostering sustainable solutions in the face of changing cli-
matic conditions. 

2. Methods and materials 

2.1. Description of the study area 

The northern region of Bangladesh, which includes the Rajshahi and 

Rangpur divisions of administration and sixteen districts of Bangladesh, 
has been selected as the study area (Fig. 1). The study area is located 
between 88◦10 and 89◦ East longitudes and 23◦48 and 26◦38 North 
latitudes, with a total area of 34,359 sq. km, including 2824 sq. km of 
aquatic bodies, and a mean elevation of approximately thirty meters 
beyond mean sea level (Islam et al., 2022; Sarkar et al., 2022). The 
Padma River forms the southern boundary, the Jamuna River the 
eastern, and the Indian border the western (Islam et al., 2022). This 
region is inhabited by 38 million people approximately (Rajshahi divi-
sion: 20,353,119 and Rangpur division: 17,610,956) (Daily Sun, 2022). 

The northern region has substantial anomalies in temperature and 
precipitation because to its location over the tropic of cancer and 
because of this, it typically has a monsoon climate with a significant 
quantity of precipitation falling between May and September (1583 
mm) (Das et al., 2023). While monsoon humidity is consistently high 
throughout the year, it drops dramatically as the dry season winds down 
(Rashid, 2019; Shahid, 2010). In this region, there are three seasons: a 
dry winter (December to February), a pre-monsoon hot summer (March 
to May), and a rainy monsoon (June to October) (Das et al., 2023). The 
area experiences a yearly average rainfall ranging from 1400 to 1550 
mm, depending on the season. The region’s mean temperature is 
24.5 ◦C, with the summer months experiencing temperatures exceeding 
40 ◦C and the winter months experiencing temperatures below 10 ◦C 
(Shahid and Khairulmaini, 2009). 

The northern region can be geographically classified into four 
distinct regions, namely the Barind tract, Himalayan piedmont plains, 
alluvial lowland along the Jamuna river, and alluvial lowland along the 
Padma (Ganges) river (Sumiko, 1993). Nearly 80 % of the land in this 
region is used for agriculture, making it agriculturally dominant (Mur-
phy et al., 2017). Approximately 59 % of the agricultural land in the 
region is encompassed by irrigation land, with surface water accounting 
for approximately 75 % of the irrigation water utilized (Das et al., 2023). 
Notably, the exclusive means of irrigation available in this particular 
area throughout the arid season is groundwater (Shahid and Hazarika, 
2010). The aridity of the soils in this area is a result of restricted and 
erratic rainfall patterns, compounded by impediments to the natural 
course of the river (Brammer, 1996; Rashid, 2019). 

Fig. 1. Study area.  
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2.2. Description of data 

2.2.1. Remote sensing data 
A total of six drought factors were obtained from two types of MODIS 

satellite imagery on the Terra platform by using some formula (Table 1). 
MOD09A1 surface reflectance with 500-meter spatial resolution was 
used to calculate the NDVI, NDWI, NDMI, NDDI, and NMDI indices from 
2010 to 2019. On the other hand, MOD16A2 with 500-meter spatial 
resolution was used to calculate the ET index for the ten years, where the 
values were calculated as the average annual evapotranspiration rate in 
kg/m2 for each year. The seventh drought factor, precipitation, was 
obtained from NASA’s IMERG satellite image. It provides rainfall data 
with a 0.1 by 0.1-degree (or roughly 10 km by 10 km) resolution. In this 
study, the average annual rainfall data from IMERG was used to 
generate this index from 2010 to 2019, where all the precipitation index 
was expressed in units of mm/day. The selection of the seven factors for 
meteorological drought assessment in this study was guided by their 
established roles in influencing drought conditions. The chosen drought 
factors collectively offer comprehensive insights into vegetation health, 
moisture content, and the overall water balance of the study area. The 
inclusion of these factors was also influenced by data availability for the 
study area, reliability, and compatibility with the employed machine 
learning approach. While acknowledging the significance of tempera-
ture as a drought-related parameter, it is important to note that the focus 
of this study was specifically on land surface and vegetation-related 
indicators, which have demonstrated strong associations with drought 
dynamics in this region. In the context of employing ET as one of the 
factors, its interrelation with the temperature indirectly encompasses 
the temperature-related dimension of drought within this study. Multi-
ple studies have demonstrated a strong correlation between ET and Land 
Surface Temperature (LST), highlighting their interdependence, 
wherein changes in land surface temperature have a notable impact on 
the rate of evapotranspiration (Danda et al., 2023; Jiang and Weng, 
2017; Rocha et al., 2020; Wang et al., 2020). Nonetheless, the potential 
role of temperature as an influencing factor is duly acknowledged, and 
its exploration could be a valuable avenue for future research aimed at a 
more holistic understanding of meteorological drought dynamics. Ulti-
mately, the construction of all seven variables was accomplished 
through utilization of the Google Earth Engine (GEE) platform. 
Following the completion of index construction for the ten-year study 
period, all of these indices were subsequently integrated into the 
Geographic Information Systems (GIS) platform, specifically ArcGIS, for 
the purpose of standardization (see to Table 1). The inclusion of this 
phase was deemed important due to the presence of indices with varying 
units, which could potentially impact the overall blending procedure. 
The utilization of the standardization approach facilitated the 

establishment of a uniform range of values between 0 and 1 for all 
indices, hence enabling their comparability and appropriateness for 
consolidation. Within this particular context, the assigned numerical 
values of 0 represent the state with the least amount of moisture, while 
the values of 1 are indicative of the most absorbed condition. 

2.2.2. Reference data 
In this study, the SPI was utilized as a reference for monitoring 

meteorological drought. Data on monthly precipitation spanning a 
period of ten years (2010–2019) were procured from Bangladesh Agri-
cultural Research Council (BARC) for six distinct stations (Fig. 1). Sub-
sequently, the SPI values spanning from 2010 to 2019 were computed 
utilizing the cumulative monthly precipitation measurements obtained 
from each respective station. The selection of rainfall stations for 
measuring the SPI was a critical aspect of this study. Due to the spatial 
variability of rainfall patterns in the study area, careful consideration 
was given to station placement. The decision to utilize six strategically 
placed rainfall stations was based on several factors that collectively 
ensured the reliability of SPI calculations. The chosen stations, namely 
Bogra, Dinajpur, Ishurdi, Rajshahi, Rangpur, Sayedpur were selected to 
cover diverse geographical and topographical conditions within the 
study area (i.e., northern region – the Barind Tract, Teesta Floodplain). 
Each station had a robust historical dataset spanning the entire study 
period, contributing to the consistency and quality of the precipitation 
data. While it is recognized that a larger number of stations could 
potentially enhance SPI accuracy, it is worth noting that comparable 
studies have demonstrated successful outcomes with a limited number 
of stations. For instance, a study assessed meteorological drought using 
only four stations, achieving robust results (Mondol et al., 2021). 
Another research, in a manner akin to this study, utilized the same six 
meteorological stations for SPI-based drought assessment and attained 
commendable outcomes (Afrin et al., 2019). This suggests that even with 
a small number of stations, accurate meteorological drought assessment 
is achievable. Furthermore, the inclusion of additional stations located 
outside the study area was deemed problematic due to potential varia-
tions in climatic influences. To address this, spatial interpolation tech-
niques, specifically Inverse Distance Weighting (IDW), were employed. 
This technique enabled the extension of SPI values across the study area, 
taking into account the spatial distribution of precipitation. While the 
use of six rainfall stations may appear limited, this approach was a 
deliberate trade-off that aimed to strike a balance between data accu-
racy and the complexities posed by the region’s diverse rainfall patterns. 
The spatial interpolation techniques applied further contributed to 
capturing the overall meteorological drought dynamics within the study 
area. The present analysis was performed utilizing the SPEI package in 
RStudio. In this study, various time scales of the SPI were employed to 
account for the temporal delay between precipitation and drought 
conditions. There are various time scales of SPI are available, including 
accumulated 1-month (SPI1), accumulated 3-month (SPI3), accumu-
lated 6-month (SPI6), and accumulated 9-month (SPI9). The SPI1 and 
SPI3 types typically denote short-term SPIs, while the SPI6 and SPI9 
types are indicative of long-term SPIs (Kamruzzaman et al., 2019). 
Consequently, these four categories of SPIs were utilized in this study in 
order to employ SPI1 and SPI3 (short-term SPIs) as short-term drought 
indicators. On the other hand, SPI6 and SPI9 (long-term SPIs) were 
utilized as indicators of long-term drought. 

2.3. Methods 

2.3.1. Machine learning approach – Random Forest 
Numerous statistical techniques, including simple and multiple 

linear regressions, are available for evaluating the association between 
the drought factors and conditions of drought (Narasimhan and Srini-
vasan, 2005; Rhee et al., 2010; Zhang and Jia, 2013). It is difficult to 
ascertain the correlations between multiple drought factors and drought 
conditions using linear regression models due to their complexity (Park 

Table 1 
Remote sensing-based drought factors with their formula and source.  

Drought factors Formula Source 

NDVI (Band2 − Band1)/(Band2 + Band1) (Breunig et al., 
2012) 

NDWI (Band4 − Band2)/(Band4 + Band2) (McFeeters, 
1996) 

NDDI (NDVI − NDWI)/(NDVI + NDWI) (Gu et al., 2007) 
NDMI (Band2 − Band5)/(Band2 + Band5) (Zhou and Guo, 

2007) 
NMDI Band2 − (Band6 − Band7)

Band2 − (Band6 + Band7)
(Wang and Qu, 
2007) 

Scaled NDVI (NDVI − NDVImin)/(NDVImax − NDVImin) (Park et al., 2016) 
Scaled NDWI (NDWI − NDWImin)/(NDWImax − NDWImin)

Scaled NDDI (NDDImax − NDDI)/(NDVImax − NDVImin)

Scaled NDMI (NDMI − NDMImin)/(NDMImax − NDMImin)

Scaled NMDI (NMDI − NMDImin)/(NMDImax − NMDImin)

Scaled ET (ET − ETmin)/(ETmax − ETmin)

Scaled 
Precipitation 

Precipitation − Precipitationmin
Precipitationmax − Precipitationmin   
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et al., 2016). However, machine learning methods (i.e., RF) have shown 
to be robust and flexible when used to evaluate the connection between 
drought-related factors and drought conditions (i.e., SPI) and to deter-
mine the relative importance of the variables (Park et al., 2016). So, in 
this study the RF model was used to carry out the previously stated 
activities. Python’s open-source cross-platform integrated development 
environment Spyder was used to implement this model. In this study, the 
process of trial-and-error was used to find the best parameters of RF 
model suitable for this study. In the context of machine learning studies, 
it is common to employ various ratios for the training-test split, 
including 80/20, 70/30, and 60/40. However, the 80/20 split, which 
designates 80 % of the data for training and 20 % for testing, is 
frequently utilized because this proportion ensures an adequate amount 
of training data for effective model training, while also providing suf-
ficient testing data to estimate the model’s performance in out-of-sample 
scenarios (Nay et al., 2018) and the rationale for this concept is derived 
from the widely recognized Pareto principle (Joseph, 2022). Ultimately, 
in the context of this study, this particular ratio demonstrated the 
highest level of accuracy, a conclusion drawn following a series of 
iterative trials involving distinct ratios. Notably, this ratio consistently 
yielded elevated percentages in terms of Out-of-Bag (OOB) accuracy and 
cross-validation accuracy across a majority of cases. Importantly, it is 
noteworthy that prior investigations have also applied this ratio to their 
analyses, consistently yielding the most precise outcomes (Nay et al., 
2018; Park et al., 2016). The most optimal number of trees for this model 
was determined to be 1000 through systematic trial-and-error experi-
mentation as well. Table 2 provides an overview of the RF model pa-
rameters employed in the analytical framework of this study. 

The RF model was implemented for each year between 2010 and 
2019, resulting in a total of 40 runs that produced the importance of the 
seven factors for each SPI type and year. To assess the performance of 
the model for each run, five accuracy methods were employed with their 
respective purposes in this study (Table 3). 

2.3.2. Inverse Distance weighted (IDW) interpolation of SPI 
The computation of various SPIs was accomplished through the 

utilization of six rain-gauge stations positioned across the northern 
expanse of Bangladesh. However, these computations merely provide 
insights into values specific to these designated sites. Consequently, to 
endow the SPIs with relevance and applicability across the entire 
research area, a sophisticated GIS interpolation technique known as IDW 
was adeptly employed. According to ESRI, the IDW interpolation 
approach computes the values of individual cells within the study region 
by synthesizing the values from representative sample data points sit-
uated in proximity to each processing cell. Moreover, the IDW method is 
particularly well-suited for interpolating data points situated on rela-
tively flat terrain (Maleika, 2020). It is worth noting that nearly all of the 
land in Bangladesh falls within an elevation range of 10 m (Dewan et al., 
2021) and in the northern region the variation is too small. So, there was 
no need to consider the substantial influence of elevation during inter-
polation (Islam et al., 2022). The selection of the power coefficient and 
the number of neighbors for the IDW interpolation method was a chal-
lenge. This study employed a trial-and-error approach to determine the 
optimal ‘n’ value. After conducting multiple testing, a value of ‘2′ was 
determined to be the most suitable fit and the number of neighbors were 

‘12′. Furthermore, these settings were identified as optimal in a previous 
study focusing on drought within the northern region of Bangladesh 
(Islam et al., 2022). 

From 2010 to 2019, all SPIs were mapped using this method in 
ArcGIS. The SPI values from all 358 locations and years 2010–2019 were 
extracted and entered into a dataset in which the SPIs served as 
dependent variables and the seven drought factors as independent var-
iables. For the RF model, however, the dependent variables’ values must 
be either 0 or 1, or wet, normal, mild, moderate, etc. So, after extracting 
the values of SPIs for the 358 points, those values were classified based 
on the classification (Shamsnia, 2014) represented in Table 4. 

2.3.3. Analyses of the drought factors 
The determination of the relative importance of the seven drought 

factors for the assessment of meteorological drought was accomplished 
through the application of the RF model. It is noteworthy that the 
model’s optimal functionality hinges upon the availability of a sub-
stantial dataset. Therefore, approximately 358 random points were 
generated using GIS to adequately cover the northern region of 
Bangladesh (Fig. 1). In a sequential progression, the values corre-
sponding to the seven indices were meticulously extracted for each of 
these 358 points, spanning the temporal expanse from 2010 to 2019. 
After that, the IDW tool in ArcGIS was harnessed for the spatial inter-
polation of precipitation indices. This decision was underpinned by the 
origin of these indices from NASA’s IMERG satellite imagery, charac-
terized by a resolution of approximately 10 km by 10 km. Given the 
larger pixel values and nuanced fluctuations intrinsic to the study area 
relative to the image resolution, the application of IDW was deemed 
instrumental. This measure was intended not only to improve the pre-
cision of the precipitation indices but also to improve the quality of the 
resulting data, thereby facilitating a more thorough understanding of 
the nuances in the precipitation indices’ values. The IDW method was 
executed with the settings similar to IDW interpolation of SPI mentioned 
in the previous section. From the recalibrated precipitation index out-
puts, values were once again extracted from 358 points. Consequently, 
these updated precipitation index values demonstrated heightened ac-
curacy and alignment with the prevailing conditions, surpassing the 
reliability of their predecessors. The outcome of this entire procedure 
yielded a dataset wherein the SPIs were considered as the dependent 
variables while the seven indices served as the independent variables. 

Table 2 
Parameters of RF model.  

Criteria Parameters 

Model name Random Forest Classifier (RFC) 
Training data 80 % (Randomly selected) 
Testing data 20 % (Randomly selected) 
Data selection method Out-of-Bag (OOB) 
Number of trees (n_estimators) 1000 
Other settings Default 
Platform Spyder (Python 3.9)  

Table 3 
Description of the accuracy methods.  

Name Purpose in this study 

Overall 
Accuracy 

To evaluate the overall effectiveness of the model 

RMSE To evaluate the performance of the model in predicting values ( 
Park et al., 2016) 

OOB Accuracy To provide an estimate of the accuracy of the model in data 
selection, training and testing process (Bhatia, 2019) 

Cross 
Validation 

To check if the model is overfitting its training data and offer an 
estimate of how well it can generalize to new data (Fox et al., 
2017) 

F1 Score To provide a measure of the model’s performance in correctly 
classifying data points into each class based on precision and recall 
metrics (Sinha et al., 2020)  

Table 4 
SPI classification.  

SPI value Class 

2.00 and more Extremely wet 
0.50–1.99 Wet 
− 0.49 to 0.49 Normal 
− 0.99 to − 0.50 Mild drought 
− 1.49 to − 1.00 Moderate drought 
− 1.99 to − 1.50 Severe drought 
− 2 and less Extreme drought  
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The dataset, which was prepared and comprised of 358 randomly 
selected points, was inputted into the RF model, categorized by year and 
SPI type. Ultimately, the algorithm successfully produced an assessment 
of the relative importance of each index across various years and SPI 
categories. 

2.3.4. Meteorological drought distribution map 
The ultimate outcome of this study consists of a series of meteoro-

logical drought distribution maps spanning the period from 2010 to 
2019, corresponding to each type of drought indicator, namely SPIs. 
Following the determination of the significance of each drought factor 
using the RF model, these factors were assigned specific weights. To 
generate the conclusive maps, these factors were amalgamated through 
the utilization of a GIS tool known as the “Raster Calculator.” Each factor 
was then multiplied by its designated weight and subsequently com-
bined with the other indices. This iterative process yielded the final 
drought distribution maps. Given that all the indices employed in this 
procedure were standardized (as indicated by Scaled NDVI, Scaled 
NDMI, etc. in Table 1), the resultant maps also adopted a standardized 
format with values encompassing the range from 0 to 1. In order to 
visualize the maps based on different drought classes all the maps were 
classified based on the classification (Park et al., 2016) represented in 
Table 5. To gain a more profound comprehension of drought occur-
rences and their spatiotemporal attributes, an in-depth investigation was 
conducted by quantifying the extent of each drought class on the 
meteorological drought distribution maps corresponding to each SPI 
type spanning the period 2010 to 2019. Employing GIS techniques, the 
spatial dimensions of meteorological drought events for each year were 
meticulously computed. The delineation of these processes is graphi-
cally depicted in Fig. 2, providing a clear overview of the study’s 
methodologies. 

3. Results 

3.1. Drought factors 

In this study, seven remote sensing indices were employed as mete-
orological drought factors. These factors were systematically con-
structed and analyzed to fulfill the study’s objectives (Fig. 3). The 
findings of this factor analysis shed light on the spatial distribution of 
vegetation, water content, moisture content, evapotranspiration rate, 
precipitation rate, and the propensity for drought in northern 
Bangladesh. 

The non-vegetation surfaces adjacent to the Padma and Jamuna 
rivers were identified by the use of NDVI indices (Fig. 3a). The Barind 
tract demonstrated a somewhat lower density of vegetation compared to 
other regions. In contrast, the Natore and Pabna districts consistently 
displayed dense vegetation over the duration of the study, as evidenced 
by the NDWI indices (Fig. 3b), which imply higher water content. The 
primary land cover in the northern region consists of barren and urban 
regions, with varying levels of moisture content recorded in the districts 
of Joypurhat, Bogura, and Natore. The NDMI indices (Fig. 3c) indicated 
increased moisture content in close proximity to significant river sys-
tems, but certain regions in Joypurhat, Bogura, and Natore districts 
displayed excessive amounts of moisture. In addition, the NDDI in-
dicators (Fig. 3d) consistently illustrated the presence of moist 

conditions along significant river corridors, suggesting a diminished 
likelihood of drought events. From 2010 to 2019, a significant portion of 
the Rajshahi division encountered a notable increase in aridity, indi-
cating an increased susceptibility to drought occurrences. The NMDI 
indices (Fig.re 3e) revealed the presence of dry conditions in certain 
areas of the Barind tract and Rangpur division, with a gradual decrease 
in intensity during the length of the study. Following that, ET indices 
(Fig. 3f) revealed moderate evapotranspiration rates in the majority of 
regions, occasionally interspersed with high or extremely high rates in 
specific areas and years. Finally, the precipitation indices (Fig. 3g) 
underscored a notable decrease in rainfall across the entire Rajshahi 
division, accompanied by drier climate conditions observed in various 
locations within the Rangpur region. Conversely, areas situated proxi-
mate to the Himalayan range, including specific segments of Pancha-
grah, Lalmonirhat, and Kurigram, experienced elevated levels of 
precipitation during the study period in northern Bangladesh. 

3.2. SPI 

This study employed diverse iterations of the SPI as robust indicators 
of meteorological drought. Specifically, it harnessed 1-month and 3- 
month SPI values to scrutinize short-term meteorological drought pat-
terns, while 6-month and 9-month SPI values were instrumental in the 
examination of long-term meteorological drought dynamics. A meticu-
lous exploration of SPIs, encompassing the extensive timeframe from 
2010 to 2019, was methodically conducted. This rigorous analysis relied 
on precipitation data acquired with precision from a strategically 
curated network of six rain gauge stations positioned within the defined 
study area. Fig. 4 serves as an invaluable visual representation, offering 
a comprehensive illustration of the climatological drought patterns 
discerned through this extensive investigation. 

The study employed various SPI indices, each of which covered a 
range from +2, representing significantly moist or non-drought cir-
cumstances, to − 2, indicating extreme dryness or extreme drought. 
Significant variations in the frequency of drought events were observed 
within the geographical region during the period of investigation. A 
clear and noticeable pattern was observed, in which the severity of 
drought increased within each SPI category from the previous category 
in a certain year. In the year 2010, a considerable proportion of the 
northern part of Bangladesh experienced arid conditions or varying 
levels of drought, as evidenced by the SPIs. On the contrary, a decrease 
in the occurrence of drought episodes was documented in the region in 
2015. Throughout the majority of years, there was a consistent pattern 
of drought occurrences, with the Rajshahi region consistently experi-
encing the most severe drought episodes, as indicated by the outcomes 
of the SPI. 

3.3. Importance 

This study employed a methodology entailing the allocation of 
weights to each drought factor, subsequently amalgamating them to 
generate comprehensive drought distribution maps. This approach 
facilitated the determination of the relative significance of each factor. 
This observation underscored the relative importance of various drought 
factors in the computation of SPI, particularly in the context of meteo-
rological drought, across diverse temporal resolutions. 

Table 6 provides a succinct overview of the comparative significance 
exhibited by seven distinct drought-related factors across varying tem-
poral scales within the northern region of Bangladesh. It was discerned 
that throughout each year of the study period and across all SPI time 
scales, a substantial degree of importance was ascribed to Precipitation 
variables. This alignment was expected given that SPI calculations relied 
on rainfall data, signifying a robust correlation between Precipitation 
variables and SPIs. Conversely, the significance of the remaining six 
drought factors was established with minor variances, consistently 
maintaining close proximity to each other in terms of importance. 

Table 5 
Meteorological drought classification.  

Value Drought class 

0.5–1.0 No drought 
0.4–0.5 Abnormally dry 
0.3–0.4 Moderate drought 
0.2–0.3 Severe drought 
0.0–0.2 Extreme drought  
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In this study, it was observed that NDVI, NDWI, NDMI, NDDI, and 
NMDI displayed diminishing relative importance as the time scales of 
SPI increased, while ET and Precipitation exhibited an augmented 
relative importance with longer time scales of SPI. Over the course of the 
study period, the significance of the NDVI index (Fig. 5.a) and NDDI 
index (Fig. 5.d) gradually declined as the time scales of SPI extended. In 
contrast, the NDWI index (Fig. 5.b) and NMDI index (Fig. 5.e) demon-
strated their highest importance in SPI 1 and the lowest in SPI 3, with 
intermediate importance in SPI 6 and SPI 9. The relative importance of 
the NDMI index peaked in SPI 1, declined in SPI 3, increased in SPI 6, 
and reached its lowest point in SPI 9 (Fig. 5.c). Conversely, the ET index 
exhibited its highest importance in SPI 9 and the lowest in SPI 6 (Fig. 5. 
f), whereas the Precipitation index displayed the lowest importance in 
SPI 1 and the highest in SPI 9 (Fig. 5.g). This temporal lag between 
drought severity and the variations in land surface and vegetation var-
iables, as illustrated in this manner, has been explored in various 
research endeavors (Gessner et al., 2013; Piao et al., 2003). 

To ascertain the predominant meteorological drought factor in 
northern Bangladesh during the 2010–2019 period, data from Table 7 
underwent summarization. This study computed average importance 
values for each drought factor, considering both short-term 

meteorological drought indicators (SPI 1 and SPI 3) and long-term ones 
(SPI 6 and SPI 9). These results are visually depicted in Fig. 6 within this 
study. 

In this study, a notable observation was the strong correlation be-
tween the Precipitation factor and meteorological drought. Precipitation 
exhibited a significant influence, averaging 28.32 % on short-term 
drought events and 26.78 % on long-term drought events, surpassing 
other factors significantly. Short-term drought events were also influ-
enced by ET and NDWI, averaging 13.57 % and 12.13 %, respectively. In 
contrast, long-term drought events were more affected by NMDI and 
NDVI, with an average importance of 14.27 % and 12.87 %, respec-
tively. These findings highlight the varying roles of different factors in 
meteorological drought across temporal scales in northern Bangladesh 
from 2010 to 2019. 

3.4. Meteorological drought 

The meteorological drought distribution maps represent the 
conclusive outcomes of this study, effectively portraying the spatio-
temporal attributes of meteorological drought in northern Bangladesh 
during the period spanning 2010 to 2019 (Fig. 7). 

Fig. 2. Methodological framework of this study.  
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In the study period spanning from 2010 to 2019, a detailed analysis 
of drought occurrences in the northern region of Bangladesh was con-
ducted. Evidently, the Rajshahi division, specifically encompassing the 
districts of Rajshahi, Chapainawabganj, and Naogaon, consistently 
encountered recurrent occurrences of extreme and severe drought 
events, with near-annual frequency. This noteworthy pattern is further 
corroborated by the congruent observations in a number of studies, 

thereby reinforcing the robustness and validity of the identified drought 
dynamics in this region (Islam et al., 2022; Rahman and Lateh, 2016; 
Shahid and Behrawan, 2008). This trend underscores the vulnerability 
of these areas to drought impacts. Concurrently, moderate drought in-
cidents and abnormally dry conditions were observed across various 
parts of northern Bangladesh. The Barind tract area in Bangladesh is 
widely acknowledged as being very susceptible to drought, with the 

Fig. 3. Remote sensing indices: (a) NDVI, (b) NDWI, (c) NDMI, (d) NDDI, (e) NMDI, (f) ET, (g) Precipitation  
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occurrence of moderate to severe droughts exhibiting a notable increase 
in terms of intensity, frequency, and severity (Mondol et al., 2021; 
Rahman and Lateh, 2016). The present analysis reveals that the Barind 
tract region had consistently experienced a prolonged period of drought 
conditions, ranging from moderate to extreme intensity, throughout the 
bulk of the previous decade. However, it is important to note that there 

were some exceptions to this tendency in the years 2011, 2014, and 
2019. During the year 2010, the districts of Chapainawabganj and 
Naogaon had a notable increase in the occurrence of extreme and severe 
drought episodes. Likewise, the districts of Panchagrah, Thakurgaon, 
and certain areas of Nilphamari had repeated occurrences of both severe 
and mild drought conditions over the years 2011, 2012, 2014, 2015, 

Fig. 4. Meteorological drought indicator of this study (SPI).  

Table 6 
The relative importance (%) of the drought factors for 1-, 3-, 6-, and 9-month SPI.  

Year Factor Relative importance Year Factor Relative importance   

SPI 1 SPI 3 SPI 6 SPI 9   SPI 1 SPI 3 SPI 6 SPI 9 

2010 NDVI  5.22  6.98  8.81  10.03 2015 NDVI  11.03  8.84  8.14  8.11 
NDMI  6.40  7.74  11.03  10.94 NDMI  10.85  9.60  9.79  9.61 
ET  5.47  5.98  8.36  9.42 ET  10.48  9.71  8.54  7.95 
NDWI  6.82  8.48  11.09  11.56 NDWI  12.82  9.44  9.19  10.02 
PRCP  63.14  55.01  39.42  35.90 PRCP  30.92  43.63  44.56  42.99 
NMDI  6.79  8.26  11.13  11.36 NMDI  11.33  9.69  10.52  11.30 
NDDI  6.16  7.55  10.16  10.79 NDDI  12.57  9.09  9.26  10.01 

2011 NDVI  14.89  13.22  12.72  12.05 2016 NDVI  11.62  11.41  11.04  8.40 
NDMI  14.46  13.18  12.80  12.15 NDMI  11.49  11.77  10.37  8.53 
ET  14.84  14.93  12.35  11.29 ET  10.89  13.22  11.87  11.40 
NDWI  15.49  13.67  13.19  11.24 NDWI  11.40  11.40  10.36  9.24 
PRCP  8.49  18.18  21.31  29.35 PRCP  32.03  30.22  34.51  43.68 
NMDI  14.40  13.22  14.39  12.28 NMDI  11.31  11.05  11.41  9.23 
NDDI  17.43  13.60  13.24  11.65 NDDI  11.26  10.94  10.44  9.51 

2012 NDVI  5.57  11.20  9.91  9.17 2017 NDVI  11.84  11.61  11.90  9.53 
NDMI  5.45  9.45  8.01  7.77 NDMI  12.15  9.71  10.61  11.44 
ET  7.72  8.80  8.90  10.94 ET  10.46  12.73  11.98  10.82 
NDWI  7.03  8.76  9.30  8.87 NDWI  13.36  9.34  8.87  10.64 
PRCP  60.18  43.99  45.27  46.20 PRCP  24.52  35.76  36.86  36.41 
NMDI  7.26  8.82  9.47  8.93 NMDI  13.39  11.18  11.17  10.97 
NDDI  6.78  8.99  9.13  8.12 NDDI  14.29  9.66  8.60  10.19 

2013 NDVI  6.98  5.65  7.67  9.83 2018 NDVI  13.33  12.09  11.18  12.35 
NDMI  7.21  6.80  8.30  9.19 NDMI  11.06  11.44  10.73  11.74 
ET  11.45  11.36  10.63  10.97 ET  12.88  14.68  10.44  13.66 
NDWI  9.69  8.39  9.56  11.03 NDWI  13.30  12.47  11.31  12.70 
PRCP  48.17  53.14  45.08  39.05 PRCP  20.98  23.25  33.13  23.62 
NMDI  8.63  7.65  9.55  9.92 NMDI  15.95  14.51  12.22  13.75 
NDDI  7.86  7.02  9.20  10.00 NDDI  12.52  11.57  10.98  12.18 

2014 NDVI  11.93  12.52  9.29  12.68 2019 NDVI  12.65  5.70  8.50  5.79 
NDMI  11.67  13.17  12.28  11.59 NDMI  14.14  5.63  8.87  6.79 
ET  9.73  14.77  10.36  9.58 ET  13.63  8.99  9.72  6.79 
NDWI  14.88  12.29  12.12  13.57 NDWI  12.65  6.20  8.54  8.18 
PRCP  24.88  22.84  32.31  27.17 PRCP  20.34  60.71  47.47  56.49 
NMDI  15.01  13.21  12.95  13.99 NMDI  13.74  6.74  7.90  8.41 
NDDI  11.90  11.21  10.70  11.42 NDDI  12.84  6.03  9.00  7.55  
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2016, and 2018. In contrast, the districts of Joypurhat and Bogura 
exhibited comparatively lower levels of impact, as they encountered 
notable instances of drought primarily during the years 2011, 2014, 
2017, and 2019. The aforementioned data collectively emphasize the 
heterogeneous nature and differing levels of severity of drought events 
in different districts of northern Bangladesh from 2010 to 2019. 

Furthermore, the meteorological drought distribution map provided 
a comprehensive depiction of drought’s impact on northern Bangladesh 
from 2010 to 2019. The distribution and severity of drought across the 
region were effectively captured through this analysis. Quantification of 
affected areas in terms of each drought class was facilitated by calcu-
lating area percentages. Notably, the year 2010 recorded over 30 % of 

northern Bangladesh grappling with moderate drought events, marking 
it as the most affected class. Subsequent years demonstrated varying 
trends, with noteworthy changes in 2011 as the percentage of areas with 
no drought events reached. 

its pinnacle, ranging from 35 % to 40 %. Transitioning into 2012, 
there was a notable shift in the percentage of areas impacted by mod-
erate drought, reaching a peak ranging from 25 to 33 %. A separate 
study specifically identified that approximately 29 % of the region had 
been affected by moderate drought during that year in the northern 
region (Mamun et al., 2018). Notably, 2013 exhibited the highest 
occurrence of abnormally dry conditions, affecting 28 to 33 % of areas. 
Additionally, years like 2014, 2015, 2016, and 2017 displayed varying 

Fig. 5. Average importance of drought factors based on different SPI.  

Table 7 
Accuracy assessment of the RF model.  

SPI Accuracy Type (%) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

SPI 1 Overall Accuracy  93.00  93.00  95.00  82.00  85.00  92.00  89.00  84.00  83.00  96.00 
RMSE  6.30  10.19  6.90  8.18  8.29  6.74  10.40  6.90  11.75  6.99 
Out of Bag Accuracy  93.00  98.00  90.00  84.00  84.00  88.00  85.00  86.00  83.00  94.00 
F1 Score  93.05  89.01  93.10  90.23  91.01  98.48  85.33  97.89  91.25  98.54 
Cross Validation  94.00  96.00  90.00  83.00  85.00  90.00  85.00  83.00  85.00  96.00 

SPI 3 Overall Accuracy  92.00  90.00  85.00  92.00  86.00  89.00  85.00  82.00  82.00  89.00 
RMSE  12.62  21.57  11.19  10.20  9.69  15.13  17.77  17.22  22.43  10.71 
Out of Bag Accuracy  90.00  94.00  82.00  90.00  83.00  85.00  84.00  84.00  82.00  90.00 
F1 Score  86.59  85.94  86.11  90.26  89.35  98.48  78.98  95.85  91.25  97.92 
Cross Validation  87.00  93.00  81.00  91.00  81.00  84.00  80.00  83.00  85.00  84.00 

SPI 6 Overall Accuracy  85.00  95.00  83.00  89.00  85.00  86.00  85.00  82.00  82.00  84.00 
RMSE  19.81  11.51  18.50  12.76  8.86  21.10  27.79  19.03  28.10  10.34 
Out of Bag Accuracy  91.00  93.00  87.00  82.00  80.00  82.00  82.00  80.00  76.00  89.00 
F1 Score  97.22  95.85  94.02  90.41  89.29  95.85  87.30  94.44  77.43  95.81 
Cross Validation  88.00  94.00  90.00  85.00  82.00  80.00  84.00  84.00  78.00  82.00 

SPI 9 Overall Accuracy  83.00  85.00  82.00  84.00  86.00  82.00  81.00  85.00  83.00  90.00 
RMSE  30.67  28.14  21.66  22.08  21.46  25.16  30.82  25.07  28.64  11.75 
Out of Bag Accuracy  80.00  85.00  80.00  81.00  84.00  80.00  85.00  78.00  80.00  92.00 
F1 Score  98.61  80.01  90.48  95.82  80.69  86.75  94.41  81.08  91.20  95.84 
Cross Validation  81.00  83.00  79.00  82.00  85.00  80.00  82.00  86.00  89.00  91.00  
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distributions of drought classes, emphasizing the fluctuating nature of 
drought patterns across the study area. A study has determined that, on 
average, the increasing trend of drought in the northern region amounts 
to approximately 4.1 % every 10 years (Mamun et al., 2018). Signifi-
cantly, the study underscored that throughout the period spanning from 
2010 to 2019, a substantial segment of northern Bangladesh consistently 
confronted the impact of extreme and severe drought conditions. On 
average, over 5 % of the study area encountered extreme drought 
events, while the incidence of severe drought events affected more than 
12 %. This trend signifies a notable escalation in the frequency of 
extreme drought events within this geographic expanse over time, 
further accentuating the region’s ongoing struggle with persistent 
drought challenges. 

The relationship between the measured area percentage and 
different types of SPI (Fig. 8) was also explored, revealing intriguing 
trends. Notably, long-term drought indicators (SPI 6 and SPI 9) consis-
tently exhibited a higher frequency of area percentage in the extreme 
drought category compared to short-term indicators (SPI 1 and SPI 3), 
with a few exceptions. This suggests the cumulative impact of prolonged 
precipitation deficits in driving extreme drought occurrences. Similarly, 
in the category of severe drought, SPI 6 and SPI 9 also demonstrated 
higher frequency percentages, further reinforcing the relevance of 
longer time frames in understanding severe drought dynamics. Notably, 
variations were observed across different years and SPI types for other 
drought classes, underscoring the nuanced interplay between drought 
severity and SPI types. 

3.5. Accuracy assessment of the RF model 

Values for five accuracy metrics were reported in Table 7 to assess 
the performance of the random forest model. The values of the five 
categories of accuracy provided supporting evidence for the model’s 
capacity to reliably predict or categorize data and gave insights into the 
model’s ability to generalize to new, unknown data. 

The current study employed accuracy assessment metrics to evaluate 
the overall efficacy and dependability of the RF model used to generate 
drought distribution maps in the northern region of Bangladesh. The 
overall accuracy metric, which measured the concordance between 
predicted and observed values, consistently demonstrated strong per-
formance, with values exceeding 80 % in the majority of instances and 
ranged from 81 % to 95 %. This demonstrated the model’s ability to 
capture the relative importance of the drought factors considered. The 
RMSE accuracy metric reflected the model’s capacity to reliably predict 
values. In this study, RMSE values ranged from 6 % to 31 %, indicating 
that prediction errors were comparatively low in all cases. The Out-of- 
bag (OOB) accuracy metric was particularly crucial for machine 
learning classification models as it estimated the model’s accuracy 
during the data selection, training, and testing processes. The OOB ac-
curacy values in this study ranged from 76 % to 98 %, suggesting the RF 
model performed well in these crucial stages. The F1 score, a prominent 
metric used to assess the classification performance of the model by 
measuring the precision and recall of data point classification for each 
class, continuously exhibited elevated values in our investigation, with a 
range of 76 % to 99 % observed in the majority of instances. This 

Fig. 6. Influential factors of meteorological drought in northern Bangladesh.  
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observation suggests that the model possesses a high level of compe-
tence in effectively categorizing data points with precision. Further-
more, the utilization of cross-validation as a metric in this study allowed 
for an assessment of the RF model’s ability to generalize to new and 
unseen data. This approach effectively mitigated the risk of overfitting 
to the training data. The obtained values for the cross-validation metric 
ranged from 78 % to 94 %. In summary, the evaluation of these accuracy 
measures highlights the strength and dependability of the RF model in 
capturing the relative importance of drought causes and producing 

accurate drought distribution maps for the northern region of 
Bangladesh. 

4. Discussion 

Bangladesh has been susceptible to drought, as evidenced by the 
occurrence of around twenty significant drought occurrences within the 
last five decades (Rahman & Lateh, 2016). The aforementioned occur-
rences have had a noteworthy influence on the northern region, 

Fig. 7. Meteorological drought distribution map of northern Bangladesh.  
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resulting in a substantial decrease in agricultural productivity, estimated 
to be between 25 and 30 % (Habiba et al., 2011; Islam et al., 2022). 
Assessing and monitoring drought occurrences is crucial for under-
standing regional drought features and such insights help create a 
drought management plan that addresses northern Bangladesh’s unique 
challenges. The present study undertook a complete evaluation of 
meteorological drought in the northern part of Bangladesh, specifically 
concentrating on Rajshahi and Rangpur divisions, encompassing sixteen 
districts. This study sought to examine the dynamics of meteorological 
drought in the specified region between 2010 and 2019 by employing 
seven satellite-derived drought parameters and the Random Forest (RF) 
model. The performed study not only provides illumination on the 

changing patterns of drought, but also offers valuable insights into the 
complex interactions among many components that contribute to the 
severity of drought. 

The study area’s SPI production fluctuations over time illuminated 
climatic drought dynamics in northern Bangladesh. A consistent trend of 
increasing meteorological drought severity within each SPI class from 
the previous class in a given year indicated a decade-long escalation of 
drought conditions in the studied area. The SPI findings also showed that 
most of the Barind tract region and some districts have experienced 
various meteorological drought occurrences over the decade. Multiple 
satellite-derived indices revealed the geographical distribution of 
vegetation, water and moisture content, evapotranspiration rate, 
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precipitation rate, and drought likelihood in northern Bangladesh. NDVI 
indices showed non-vegetation surfaces on the Padma and Jamuna 
rivers, indicating water bodies. The Natore and Pabna districts had lush 
vegetation, but the Barind tract had less. This showed the relevance of 
regional river networks and diverse vegetation. Also, NDWI indices 
showed substantial water content along river streamlines. Most of the 
north was cities and desolate land. The water content in Joypurhat, 
Bogura, and Natore districts varied from high near rivers to dry or urban 
regions. High moisture levels along major rivers indicated water pres-
ence, according to NDMI indices. In Joypurhat, Bogura, and Natore 
districts, moisture levels were higher than elsewhere in northern 
Bangladesh. These findings showed how river systems affect moisture 
patterns and spatial variability. Along major river streamlines, the NDDI 
indexes showed wet conditions, reducing drought risk. However, the 
Rangpur division and sections of the Barind tract were very dry and the 
severity of the condition was decreasing, according to the NMDI indices. 
The Rajshahi division was heavily drought-prone. The rates of evapo-
ration varied across northern Bangladesh, with some places having 
moderate rates and others having high or very high rates in some years, 
according to ET indexes. This revealed geographical variability in 
evapotranspiration and water demand and availability across the 
research area. Rajshahi and several Rangpur districts were drier, ac-
cording to precipitation indicators. Near the Himalayas, Panchagrah, 
Lalmonirhat, and Kurigram received more rain. The northern part of 
Bangladesh has geographical variation in vegetation, water content, 
moisture, and drought risk. Understanding these trends was essential for 
drought management and resource allocation. 

This study determined which drought parameters were most 
important for assessing SPI (i.e., meteorological drought) at various time 
scales in the study area, which was critical to attaining the study’s ob-
jectives. Precipitation significantly affected meteorological drought ep-
isodes in the study area, emphasizing the need of appropriate rainfall in 
drought mitigation. The study found that ET and NDWI were more 
influential in short-term meteorological drought and drought indicators 
like NMDI and NDVI were more influential in long-term meteorological 
drought in northern Bangladesh (Fig. 6). Multiple studies have estab-
lished that ET and NDWI are factors associated with the land surface 
(Huizhi & Jianwu, 2012; Li et al., 2013), whereas NMDI and NDVI are 
factors associated with vegetation (Wang & Qu, 2007; Zhang and Jia, 
2013). The findings of this study indicate that land surface-related 
indices exert a greater influence on short-term drought events, while 
vegetation-related indices exhibit a stronger impact on long-term 
drought events. 

During the ten-year period from 2010 to 2019, the northern region of 
Bangladesh exhibited a recurring pattern of extreme and severe drought 
events, notably in the Rajshahi division, encompassing Rajshahi, Cha-
painawabganj, and Naogaon districts. The Barind tract is known for its 
susceptibility to drought, and this study’s meteorological drought dis-
tribution map confirms this, as the majority of the Barind tract area has 

been affected by moderate to severe droughts of increasing intensity, 
frequency, and severity over the past decade. It’s worth noting that 
while this trend was prominent over the decade, exceptions occurred in 
2011, 2014, and 2019. In 2010, Chapainawabganj and Naogaon expe-
rienced a marked rise in extreme and severe drought occurrences. 
Similarly, districts like Panchagrah, Thakurgaon, and certain areas of 
Nilphamari witnessed recurring episodes of both severe and mild 
drought conditions between 2011 and 2018. In contrast, Joypurhat and 
Bogura districts faced comparatively lower drought impacts, with 
notable instances primarily in 2011, 2014, 2017, and 2019. An impor-
tant understanding was gained from the examination of area percent-
ages taken from the drought maps, revealing that longer time frames 
(SPI 6 and SPI 9) demonstrated an increase in the areas impacted by 
various drought classes. This finding suggested that prolonged periods of 
precipitation shortages resulted in more frequent occurrences of drought 
events. This comprehensive analysis underscores the heterogeneous 
nature of drought events in various districts of northern Bangladesh 
during the studied period. These findings closely resemble with some 
studies outcomes (Islam et al., 2022; Mondol et al., 2021; Rahaman 
et al., 2016; Rahman & Lateh, 2016) but they display more classes of 
variations of drought events over the past decade and upholding the 
influence of underlying factors as well as the relationship of the severity 
of droughts with time varying SPIs. 

Numerous prior investigations have centered on drought assessments 
in northern Bangladesh. These studies have adopted various method-
ologies, including diverse drought typologies, seasonal examinations, 
and analyses based solely on rainfall data or SPI only. However, none of 
these studies have integrated remote sensing indices with a machine 
learning model to comprehensively assess the influence of these indices 
and establish correlations between time-varying scales of the SPI and the 
frequency as well as severity of drought events. The study’s findings 
effectively bridge these research gaps in the context of northern 
Bangladesh, providing a comprehensive and unique contribution to the 
existing body of knowledge in the field of drought assessment in this 
region. Drought patterns and severity in northern Bangladesh were 
influenced by several internal factors. Variations in vegetation density 
and moisture content, particularly in the Barind tract, played a crucial 
role in drought vulnerability. Changes in precipitation patterns, 
including decreased rainfall and drier climates in specific regions, 
heightened drought susceptibility. Conversely, areas near the Himala-
yan range with elevated precipitation levels experienced lower drought 
risks. The study also highlighted a temporal lag between drought 
severity and variations in land surface and vegetation variables, 
contributing to nuanced interplays among factors. The consistent in-
crease in drought severity within each SPI category indicates worsening 
drought conditions, particularly in the Rajshahi division. Different fac-
tors played varying roles in short-term and long-term drought events, 
with precipitation emerging as the most influential factor, followed by 
ET, NDWI, NMDI, and NDVI. These internal causes provide insights into 
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the complex dynamics of meteorological drought in northern 
Bangladesh. 

In light of these findings, this study carries significant implications 
for drought mitigation and resource allocation strategies. It is important 
to emphasize that the study’s contributions extend beyond academic 
research and have practical relevance. The insights into the intricate 
dynamics of meteorological drought gained from this study hold the 
potential to significantly impact the region’s resilience and prepared-
ness. This includes more effective early warning systems that can be 
tailored to specific drought types, enabling timely responses. Moreover, 
the findings can inform resource allocation strategies for agriculture, 
optimize water resource management, and guide climate-resilient 
practices. Local communities can benefit from this research by imple-
menting targeted environmental conservation efforts and enhancing 
their disaster preparedness. Overall, this study not only advances sci-
entific knowledge but also offers actionable insights that can enhance 
the region’s ability to cope with and mitigate the impacts of drought. 

5. Conclusion 

Bangladesh, which is situated in South Asia’s delta region, is in fact 
considered to be highly susceptible to many climatic risks, such as 
meteorological drought. Northern Bangladesh is particularly susceptible 
to drought’s devastating impacts. This study has illuminated the intri-
cate dynamics of meteorological drought in northern Bangladesh during 
the period from 2010 to 2019. The comprehensive analysis underscores 
the pronounced impact of precipitation, evapotranspiration, and 
vegetation-related factors on the severity of drought, both in the short 
and long terms. During this period, Rajshahi division’s Rajshahi, Cha-
painawabganj, and Naogaon districts consistently experienced severe 
drought, with the Barind tract facing prolonged drought. Panchagrah, 
Thakurgaon, and parts of Nilphamari observed intermittent severe and 
moderate droughts. The meteorological drought maps highlighted 
drought distribution, while area percentages analysis emphasized long- 
term SPIs’ (SPI 6 and SPI 9) consistency in extreme and severe droughts, 
underlining the importance of longer time scales. Leveraging the capa-
bilities of the random forest model and remote sensing indices, this 
research successfully assessed localized drought occurrences and high-
lighted the considerable regional diversity in drought characteristics 
across the study area. As the scope of investigation expands, this 
research not only advances the comprehension of meteorological 
drought but also paves the way for further inquiry. The empirical in-
sights gleaned from this study have practical implications for devising 
effective drought management strategies in the vulnerable northern 
Bangladesh region. This study also emphasized the significance of 
applying machine learning techniques and remote sensing indices in 
drought assessment, offering insightful information for further research 
and monitoring projects. 

However, it is essential to acknowledge certain limitations inherent 
in this study. The scope was confined to the northern region of 
Bangladesh, necessitating caution in extending the findings to other 
geographical contexts. Moreover, the choice of the machine learning 
model and associated parameters may yield disparate results in different 
regions. Future endeavors should encompass a broader geographic 
spectrum and consider alternative modeling approaches to enrich the 
understanding of meteorological drought dynamics. The synthesis of the 
findings with the future trajectory of research underscores the perti-
nence of this study within the broader framework of ecological in-
dicators and climate resilience, advocating for informed decision- 
making and adaptive strategies in the face of meteorological drought 
challenges. 
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